

D T A V
REPAIR MANUAL N ${ }^{\circ} 814$
VOLUME I

MARCH 1974
(TECHNICAL ASSISTANCE)
(D vehicles all types produced since september 1965)

CHARACTERISTICS
 ADJUSTMENTS

CHECKS

printed in france
SOCIETE ANONYME AUTOMOBILES CITROEN

USING THE MANUAL

PRESENTATION

To facilitate the use of the Manual we have arranged the repair operations into two volumes :

- Volume l contains :
- the CHARACTERISTICS - ADJUSTMENTS - CHECKS necessary at all repair workshops for adjustment or simple repairs.
- Volume II contains the operations of :
- DISMANTLING and ASSEMBLING.
- RECONDITIONING.
- ELECTRICAL SYSTEM - HEATING - AIR CONDITIONING.
- BODYWORK.

Each volume is sold separately and it is presented in a red Fibrex with a "MULTO " type clasp to facilitate adding amendments or taking out an operation needed by the repair workshop.

COMPOSITION

Each volume contains :

- a list of the operations appearing in the volume.
- the operations arranged in numerical order
- a list of all the tools mentioned in the operations and drawings for making the special tools that are not sold but that can be made by the repairer himself.

OPERATIONS

The operation sequence has been compiled to ensure the best quality of work in the shortest possible time.

The numbers of the operations are composed of :
a) letters indicating the vehicle :

- "D" concerns operations on D of all types (DTT)
- "Dh" concerns operations on vehicles equipped with hylaudric gear-change
- "D m" concerns operations on vehicles equipped with a manual gear-change
- "DbW" concerns operations on vehicles equipped with automatic gear-change (DBW)
- "D.I.E." concerns operations on vehicles equipped with Electronic Fuel Injection (D.I.E. operations are printed on pink paper).
- "DX" "DY" "DV" "DT", etc... concern operations on these types of vehicles only.
b) a number with three figures indicating the unit or unit component.
c) a figure indicating the nature of the section.
- figures 000 indicate the characteristics of the vehicle
- figures 00 indicate the characteristics of the unit
- figure 0 indicate checks and adjustment
- figures 147 indicate the removal and fitting
- figures 258 indicate stripping down and reassembly
- figures 369 indicate reconditioning

The arrows corresponding to the operation list marks allow the required operation to be found quickly.

TOOLS

Special tools are indicated in the text by a number followed by the letter T.
These tools are sold by :

- Etablissements FENWICK Department AMA 24 Bd. Biron - 93404 St Ouen FRANCE

Additional tools are indicated in the text by a number preceded by the letters MR.
The drawings for making these tools, arranged in numerical order, occur at the end of each volume.

TIGHTENING TORQUES

These torques are expressed in :

- Metre-Newtons ($\mathrm{m} \Lambda \mathrm{N}$), the legal in France
- Metre-Kilogramme (mkg), since most torsion-spanners in current use are sograduated $1 \mathrm{mkg}=9.81 \mathrm{~m} \wedge \mathrm{~N}$ exactly

The figures quoted are "rounded off", taking 1 mkg at 10 m \ N , thus:
$2 \mathrm{~m} \Lambda \mathrm{~N}$ is taken to equal 0.2 mkg (1.4 ft . Ibs)
60 m 1 N is taken to equal 6 mkg (43 ft . Ibs)

- Foot pounds (ft. Ibs) converted at 7.22 ft . Ibs $=1 \mathrm{mkg}$, and rounded off to practical figures.

Important. When a tightening torque figure is followed by the words "torsion spanner", the operation must of necessity be carried out with a torsion spanner.

ADVISORY SERVICE

For all technical information concerning these vehicles, please contact :

```
= The Service Department,
    Citroën Cars Limited.
    SLOUGH - BUCKS = GREAT - BRITAIN
```

or :

- Département Technique Après-Vente

Assistance technique
163, Avenue G. Clémenceau 92000 NANTERRE = FRANCE

LIST OF OPERATIONS SHOWN IN VOLUME $\mathrm{N}^{\circ} 1$ OF MANUAL 814
Vehicles D «all types», except. IE

Operation Number	DESCRIPTION
	Characteristics (1)
D. 000	General characteristics (general dimensions, various capacities)
D. 01	Protection of the electrical units
D. 02	Work on the hydraulic system (precautions)
D. 03	Ingredients recommended
	engine - carburation - ignition (2)
D. 100-00	Engine characteristics
D.112-0	Adjusting the valve rocker clearances
D.133-0	Adjusting the engine mountings (engine removed)
D. 142 -00	Characteristics and particular features of carburettors
D.142-0	Adjusting the carburettors and controls - Basic adjustments (vehicles with hydraulic gearchange) - Idling adjustment(vehicles with manual gearchange) - Accelerator control adjustment
Dbw. 142-0	Idling adjustment (Borg Warner)
D. $173-0$	Checking and adjusting the petrol pump - Adjusting the output. - Checking the pressure - Checking for leaks
D. $210-00$	Characteristics and particular features of the ignition (distributors, sparking plugs, coils)
D. $210-0$	Checking and adjusting the ignition - Adjusting the initial static setting - Principle of the method for measuring advance with a stroboscopic lamp - Adjusting the ignition setting by stroboscopic lamp - Adjusting the ignition setting by stroboscopic lamp with dephaser - Test-bench check of a distributor - Cleaning and adjusting the sparking plugs - Checkıng a coil
D. 220-0	Checking the oil pressure on the vehicle
D. $230=0$	Checking the cooling system (thermostat)
D. 236-0	Adjustments of pulleys and belts - Alignment of the pulleys - Belt tensions
$\begin{aligned} & \text { D. } 312-00 \\ & \text { D } 312-00 \mathrm{a} \end{aligned}$	$\begin{aligned} & \text { Characteristics and control of clutch } \longrightarrow \text { 10/ } 1972 \\ & \text { Characteristics and control of clutch } \\ & \text { Ch/ } 1972 \end{aligned}$
Dh. 3140	Checks and adjustments on clutch control (vehicles with hydraulic gearchange) - Checking for leaks in the clutch cylinder - Bleeding the centrifugal regulator - Checking clutch disengagement - Checking the clutch engagement pressure - Checking the pressure supplied by the hydraulic selector
Dm.314-0	Cheeking and adjusting the clutch control (vehicles with manual gearchange) - Simple pedal gear \longrightarrow 9:1968 - Pedal gear with over-centre spring $\longmapsto 91968$
Dbw.320-00	Characteristics and particular points of torque converter

D. 000
D. 02
D. 03
D. 100-00
D.112-0
D.133-0
.142-00
D.142-0

Dbw. 142-0
D.173-0
D. 210-00
D. 210-0
D. 220-0
D. 230-0
D. 236-0
D. $312-00$

D $312-00 \mathrm{a}$
Dh.314-0

Dm.314-0

Dbw.320-00

Characteristics and particular points of torque converter

Vehicles D «all types.

Operation Number	DESCRIP TION
D.450-00	Characteristics and particular features of the brake system
D.451-0	Checking and adjusting the brake units
D.453-0	Checking and adjusting the brake control - Bleeding the circuits - Pedal gear control (All types except DV.DT) - Control by metering valve (DV.DT)
D. 454-0	Checking and adjusting the parking brake ELECTRICAL SYSTEM (12)
DX.510-00	Arrangement of the electrical system ($D X . D J$. $\longmapsto 9,196.0{ }^{\text {a }} \longrightarrow 9 / 1966$)
DY.510-00	Arrangement of the electrical system ($\left.D Y-D L-D E \longrightarrow 9{ }^{\prime} 196.\right)^{\circ} \longrightarrow 9 / 1966$)
DX.510-00 ${ }^{\text {a }}$	Arrangement of the electrical system (DX-DJ-DY-DL $\longrightarrow 9 / 1966 \longrightarrow 9 / 1967$)
DV. $510-00$ a	Arrangement of the electrical system($D V$ ($\longrightarrow 9 / 1966 \longrightarrow 9 / 1967$)
DX. $510-00 \mathrm{~b}$	Arrangement of the electrical system (DX-DJ-DY-DL $\longrightarrow 9 / 1967 \longrightarrow 12 / 1967$)
DV. $510-00 \mathrm{~b}$	Arrangement of the electrical system ($D V$ ($\longmapsto \mathrm{m} / 1967 \rightarrow 12 / 1967$)
DX.510-00 c	Arrangement of the electrical system (All types) \longmapsto L ${ }^{\text {a/ }}$ (1967 \longrightarrow 10/19681
DX. 510.00 d	Arrangement of the electrical system (DX-DJ. $\longrightarrow 10$ 1968 \rightarrow (\rightarrow 1969)
DY.510-00 d	Arrangement of the electrical system ($D Y-D L-D V-D T \longrightarrow 9$ 1969 \longrightarrow 1/1969)
DX. $510-00 \mathrm{e}$	Arrangement of the electrical system (DX-DJ $\quad \longrightarrow 1 / 1969 \longrightarrow$ 9/1969)
DY.510-00 e	Arranqement of the electrical system ($D X-D L$ ($\longmapsto 1 / 1969 \longrightarrow 9 / 1969$)
DX.510-00 \ddagger	Arrangement of the electrical system (All types. $\longmapsto 9$ /1969)
Dm.510-00	Arrangement of the electrical system (DJ-DT-DV $\longrightarrow 4 / 1971$)
Dm.510-00 a	Arrangement of the electrical system (Manual gearchange $\longrightarrow 9 / 1971$)
Dh. 51000 a	Arrangement of the electrical system (IIydraulic gearchangen-9/1971)
Dbw.510-00	Arrangement of the electrical system (Borg Warner)
D. 513.00	Electrical system of air conditioning
D. 530.0	Characteristics and checks of electrical units (dynamo, alternator, regulator, starter motor) - Checking an alternator - Checking a regulator - Adjusting starter motor control pinion
D. 540-0	Adjustments of headlamps and controls (.1/l types) $\longmapsto 9$: 1967 - Self-levelling control - Directional control
DX.540-0	Adjustments of headlamps and controls (ID X-I)J) \longrightarrow - $9 / 1967$
DY.540-0	Adjustments of headlamps (fixed) - All types except D I $-1 / \longrightarrow$ $9 / 1967$ All types $\quad \longmapsto 9 / 1967$
D. 560-0	Checking and adjusting the windscreen wipers.
D. 640-00	Characteristics and particular points of air conditioning system
D.640-0	Checking and adjusting the air conditioning system - Filling the air conditioning circuit
D.800-0U	Interior dimensions
D.800-02	Adjustments on body Damels
D.840-0	Adjusting the doors
D.852-0	Adjusting the bonnet (locking and unlocking)
D. 961 -0	Checking and repairing of the heated rear window TOOLS 14
	List of special tools appearing in this volume. Drawings for marking tools recommended for repairs. NoTt: Electrical swten : re-arrange in your manual, the operations "5lo-om. so as) (1) place them in the arder shome.

BODYWORK 13
Interior dimensions
Adjustments on body pamels
Adjusting the doors
Adjusting the bonnet (locking and unlocking)
Checking and repairing of the heated rear window

List of special tools appearing in this volume.
Drawings for marking tools recommended for repairs.
NoTE: Electrical systen : re-arrange in vour manual, the operations" "5lotm. so uss to place them in the order stumen.

1. GENERAL CHARACTERISTICS

ENGINE		Gearbox ratios	Fiscal rating (french)
KE HORSEPOWER - TORQUE	Cubic capacity Bore - Stroke		
	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	12 CV
CV DIN AT 5500 RPM FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	3 gears	12 CV
CV DIN AT 5500 RPM 3 FT LBS) HT 3500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93,5 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	13 CV
CV DIN AT 5500 RPM 3 FT'LBS) AT 3500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93,5 \times 85,5 \mathrm{~mm} \end{gathered}$	3 gears	13 CV
CV DIN AT 5250 RPM 5 FT LBS) AT 2500 RPM (DIN)	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	12 CV
CV DIN AT 5250 RPM 5 FT LBS) AT 2500 RPM (DIN)	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	3 gears	12 CV
CV DIN AT 5250 RPM 4 FT LBS) AT 2500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93,5 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	13 CV
CV DIN AT 5250 RPiM 4 FT LBS) AT 2500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93,5 \times 85,5 \mathrm{~mm} \end{gathered}$	3 gears	13 CV
CV DIN AT 5500 RPM FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 . \times 85,5 \mathrm{~mm} \end{gathered}$	5 gears	12 CV
VV DIN AT 5500 RPM 3 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93,5 \times 85,5 \mathrm{~mm} \end{gathered}$	5 gears	13 CV
$\begin{array}{l\|cc} & \text { DX } 2(21 \mathrm{~N}) \mapsto 10 / 1968 \\ \hdashline M & 106 \mathrm{CV} \text { DIN AT 5500 RPM } \\ \text { PM(DIN }) & 17 M K G(123 \text { FTLBS) AT3000RPM(DIN) } \end{array}$	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \longrightarrow \quad 10 / 1970 \quad 4 \text { gears } \\ & \mapsto \quad 10 \% 1970 \quad 5 \text { gears } \end{aligned}$	12 CV
V DIN AT 5500 RPM 5 FT LBS) AT 2500 RPM (DIN)	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	$\begin{array}{lll} \longrightarrow 1 & 10 / 1970 & 4 \text { gears } \\ \mapsto \quad 10 / 1970 & 5 \text { gears } \end{array}$	12 CV
V DIN AT 5500 RPM 3 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93 \times 85,5 \mathrm{~mm} \end{gathered}$	5 gears	13 CV
V DIN AT 5500 RPM 4 FT LBS) AT 2500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93 \times 85,5 \mathrm{~mm} \end{gathered}$	5. gears	13 CV
	$\begin{gathered} 2.175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	12 CV
V DIN AT 5500 RPM 3 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 2.350 \mathrm{cc} \\ 93 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	13 CV

CHARACTERISTICS

OPERATION No D. 000 : General characteristics

General Symbols	Official symbols	Commercial symbols	Introduced	MA:
	DS 19 Serie A	DS 19 Hydraulic	$\begin{aligned} & \mapsto \quad 10 / 1965 \\ & \rightarrow 10 / 1968 \end{aligned}$	
	DS 20	DS 20 Hydraulic	$\mapsto 10 / 1968$	$\begin{array}{r} \text { DY } 2 \underset{91}{2} \underset{\text { CV DIN AT } 5900 \text { RPN }}{-1} 1971 \\ \text { 14.4MKG(104FT LBS)AT } 3500 \mathrm{R} \end{array}$
	ID 19 FH	Break 19 A Hydraulic	$\begin{array}{lr} \mapsto & 2 / 1968 \\ \rightarrow & 10 / 1970 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { DY } \underset{84 \text { CV DIN AT } 5250 \mathrm{RPM}}{\rightarrow} \\ \text { 14.6 MKG(106 FT LBS)AT } 3500 \mathrm{Rl} \end{array}$
	$\text { ID } 20$ Serie FH	Break 20 Hydraulic	$\begin{array}{ll} \mapsto \quad 10 / 1968 \\ \rightarrow 10 / 1970 \end{array}$	
	DS 19 Serie MA	$\begin{gathered} \text { DS } 19 \\ \text { MA } \end{gathered}$	$\begin{aligned} & \mapsto \quad 10 / 1965 \\ & \rightarrow \quad 10 / 1968 \end{aligned}$	$\begin{array}{lr} \text { DY } & 84 \mathrm{CV} \\ & 14.6 \mathrm{MKG}(106 \mathrm{~F} \end{array}$
	$\begin{aligned} & \text { DS } 20 \\ & \text { Serie } M \end{aligned}$	$\begin{gathered} \text { DS } 20 \\ M \end{gathered}$	$\begin{array}{ll} \mapsto \quad 10 / 1968 \\ \rightarrow \quad 10 / 1969 \end{array}$	DY $2 \begin{gathered}91 \mathrm{CV} \\ \\ 14.4 \mathrm{MKG}(104 \mathrm{~F}\end{gathered}$
	ID 19 F Serie A	Break 19 A Mechanical	$\begin{aligned} & \mapsto 10 / 1965 \\ & \rightarrow 10 / 1968 \end{aligned}$	$\begin{array}{lr}\text { DY } & 84 \mathrm{CV} \\ & 14.6 \mathrm{MKG}(106 \mathrm{~F}\end{array}$
	TD 20 F	Break 20 Mechanical	$\mapsto 10 / 1968$	$14.4 \mathrm{MKG}(104 \mathrm{FT}$ LBS $)$ AT 3500 RF
	ID 19 Serie B	$\begin{gathered} \text { ID } 19 \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & \mapsto \quad 10 / 1966 \\ & \rightarrow 10 / 1969 \end{aligned}$	
	$\begin{gathered} \text { ID } 19 \\ \text { Serie B } \end{gathered}$	D Special	$\mapsto \begin{gathered} 10 / 1969 \\ 10 / 1971 \end{gathered}$	$\begin{array}{lc} \text { DV } 2 & 81 \mathrm{CV} \\ & 13.7 \mathrm{MKG}(99 \mathrm{FJ} \end{array}$
	$\underset{\text { Serie FC }}{\text { DS }}$	D Special	$\begin{aligned} & \mapsto \quad 10 / 1971 \\ & \rightarrow 10 / 1972 \end{aligned}$	DV $3(3 \mathrm{~N}) \begin{array}{r}89 \mathrm{CV} \\ \text { 14.7. MKG } \\ (106 \mathrm{~F}\end{array}$
	DS Serie FD	D Special	$\mapsto 10 / 1972$	DY $3(17 \mathrm{~N}) \quad \begin{array}{r}99 \mathrm{CV} \\ 15.1 \mathrm{MKG}(110 \mathrm{~F}\end{array}$
	ID 20	ID 20	$\begin{aligned} & \mapsto \quad 10 / 1968 \\ & \rightarrow \quad 10 / 1969 \end{aligned}$	$\begin{array}{lr} \text { DY } 2 & 91 \mathrm{CV} \\ & 14.4 \mathrm{MKG}(104 \mathrm{~F} \end{array}$
	ID 20	D Super	$\begin{aligned} & \mapsto \quad 10 / 1969 \\ & \rightarrow 10 / 1971 \end{aligned}$	$\begin{array}{lr}\text { DY } 2 & 91 \mathrm{CV} \\ & 14.4 \mathrm{MKG}(104 \mathrm{~F}\end{array}$
	DS Serie FD	D Super	$\begin{aligned} & \mapsto 10 / 1971 \\ & \rightarrow 10 / 1972 \end{aligned}$	$\text { DY } 2 \quad \begin{gathered} 91 \mathrm{CV} \\ \\ 14.4 \mathrm{MKG}(104 \mathrm{~F} \end{gathered}$
	$\begin{gathered} \text { DS } \\ \text { Serie FD } \end{gathered}$	D. Super	$\mapsto 10 / 1972$	DY $3(17 \mathrm{~N})$ $15.1 \mathrm{MKG}(110 \mathrm{~F}$
	$\begin{gathered} \text { DS } 21 \\ \text { Serie M } \end{gathered}$	D Super 5	$\mapsto 10 / 1972$	$\mathrm{DX} 2(21 \mathrm{~N})$ 17. MKG $\left.\begin{array}{r}106 \mathrm{CV} \\ \mathrm{FT}\end{array}\right)$

ENGINE	Cubic capacity		Fiscal rating
MAXIMUM TORQUE	Bore - Stroke	Gearbox ratios	(French)
CV DIN AT 5250 RPM (106 LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5900 RPM 04 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85 ; 5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5250 RPM 66 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5900 RPM 4 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5250 RPM 06 ト"「 LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
$\begin{array}{lccc}71 & \text { DY } 3(17 \mathrm{~N}) & \mapsto & 10 / 1971 \\ \text { RPM } & 99 \mathrm{CV} \text { DIN AT } 5500 \text { RPM } \\ \text { 10RPM(DIN) } & \text { 15.1MKG(110FTLBS)AT3500RPM(DIN) }\end{array}$	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5500 RPM FT LBS) AT 3000 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5500 RPM J6 FT LBS) AT 2500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5500 RPM 0 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5900 RPM 4 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5900 RPM 14 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ .86 \times 85,5 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 4 \text { gears "serie" } \\ \longmapsto \quad 10 / 19705 \text { gears } \\ \text { "option" } \end{gathered}$	11 CV
CV DIN AT 5900 RPM 4 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \cdot \mathrm{~mm} \end{gathered}$	4 gears " serie" 5 gears "option"	11 CV
CV DIN AT 5500 RPM 0 FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 1,985 \mathrm{cc} \\ 86 \times 85,5 \mathrm{~mm} \end{gathered}$	4 gears	11 CV
CV DIN AT 5500 RPM FT LBS) AT 3500 RPM (DIN)	$\begin{gathered} 2,175 \mathrm{cc} \\ 90 \times 85,5 \mathrm{~mm} \end{gathered}$	5 gears	12 CV

Types of tyres and wheel rims：

－Front	D．ALL TYPES！except D．IE ALL TYPES）$\left\{\begin{array}{l}\text { DY－DT－DV－DL－DX } \\ \text { DJ－Safari－All Types－DP }\end{array}\right.$ D．IE ALL TYPES ．	$\begin{aligned} & \rightarrow 10 / 1968 \\ & 180 \times 380 \times \mathrm{AS} \end{aligned}$	$\begin{aligned} & \longmapsto \quad 10 / 1968 \\ & 180 \mathrm{HR} 380 \mathrm{XAS} \\ & 185 \mathrm{HR} 380 \text { XAS } \end{aligned}$
－Rear	D．ALL TYPES（except D．IE ALL TYPES ）and Safari ALL TYPES DY－DT－DV－DL DX－DJ－DP Safari D．IE ALL TYPES		$\begin{aligned} & 155 \mathrm{HR} 380 \text { XAS } \\ & 165 \mathrm{HR} 380 \text { XAS } \\ & 180 \mathrm{HR} 380 \text { XAS } \\ & 185 \mathrm{HR} 380 \times \mathrm{XAS} \end{aligned}$
－Spare	D．ALL TYPES（except D．IE ALL TYPES）and Safari ALL TYPES DY－DT－DV－DL DX－DJ－DP Safari D．IE ALL TYPES		$\begin{aligned} & 155 \mathrm{HR} 380 \times \mathrm{XAS} \\ & 165 \mathrm{HR} 380 \text { XAS } \\ & 180 \mathrm{HR} 380 \times \mathrm{XAS} \\ & 185 \mathrm{HR} 380 \text { XAS } \end{aligned}$
－Rims	D．ALL TYPES（except D．IE ALL TYPES）DY－DL－DV－DT ．．．．：．． D．IE ALL TYPES－DP ．．．．．．．． DY－DL－DV－DT		$\begin{aligned} & 5 \mathrm{l} / 2 \mathrm{~J} \\ & 5 \mathrm{l} / 2 \mathrm{~J} \\ & \underset{5 \mathrm{l} / 2}{\longrightarrow} 3 / 1970 \end{aligned}$

Inflation pressures（in bars）：

	Saloon				Safari		Ambulance			
	Front		Rear		Front	Rear	Front		Rear	
180×380 XAS	28 P．I．S．（1．9）		25 P．I．S．（1．7）		28 P．I．S．（1．9）	30 P．I．S．（2．1）	28 P．I．S．（1．9）		26P．I．S．（1．8）	
155×380 XAS			28 P．I．S．（1．9）							
$\mapsto \quad 10 / 1968$	Injection		DX－DJ－DP		DY－DL－DT－DV		Break		Ambulance	
	Front	Rear								
185 HR 380 XAS	$\begin{gathered} 30 \mathrm{P} . \mathrm{I} . \mathrm{S} \\ (2.1 .) \end{gathered}$	$\begin{aligned} & 26 \text { PILS. } \\ & (1.8) \end{aligned}$								
180 HR 380 XAS			$\begin{array}{\|c\|} \hline \text { 29PI.S } \\ \hline(2) \end{array}$		29 P．I．S．（2）		29PI．S．S． （2）	$\begin{gathered} 32 \text { P.I.S } \\ (2.2) \\ \hline \end{gathered}$	$\begin{gathered} 29 \text { PI.S. } \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} 28 \text { PIS. } \\ (1.9) \end{gathered}$
165 HR 380 XAS				$\begin{gathered} \text { 29P.I.S } \\ (2) \end{gathered}$						
155 HR 380 XAS						29 P．I．S．（2）				

Number of seats：

－D ALL TYPES and Commercial
－D Family and Break

1I．GENERAL DIMENSIONS

Wheel base	D．All Types				
Front track	DX－DJ－Break All Types DY－DV－DT	$\begin{aligned} & \rightarrow 110^{\prime} 1968 \\ & \rightarrow 1 / 1970 \end{aligned}$	4 FT 11 Ins $(1.500 \mathrm{~mm})$	$\begin{aligned} & \mapsto 10 / 1968 \\ & \mapsto 3 / 1970 \end{aligned}$	$\begin{gathered} 4 \text { FT } 1111 / 16 \mathrm{Ins} \\ (1.516 \mathrm{~mm}) \end{gathered}$
Rear track	DX－DJ－Break All Types DY－DV－DT	$\begin{aligned} & \rightarrow-10 / 1968 \\ & \rightarrow-13,1970 \end{aligned}$	4 FT 3 3／16Ins （ 1.300 mm ）	$\begin{aligned} & \mapsto 10 / 1968 \\ & \mapsto 31970 \end{aligned}$	$\begin{gathered} 4 \mathrm{FT} 31316 \mathrm{Ins} \\ (1.316 \mathrm{~mm}) \end{gathered}$
Overall length	D．All Types except Break Break Nil Tジャミ Break Aill Types	$\rightarrow-10 / 1{ }^{\circ} 7$	```15 FT 10 1/2 Ins (4.838 mm) 16 FT 4 1/2 lns (4.990.mm)```	$1 \rightarrow 10.1967$	```15 FT11 7 8lns (4.874 mm) 16 FT 5 7.8In; (5.026 mm)```
Overall width		$\rightarrow 10,1967$	$\begin{gathered} 5 \text { FT } 10 \text { 1'2Ins } \\ (1.790 \mathrm{~mm}) \end{gathered}$	$\mapsto 101967$	
High position	D．All Types except Break All Types：．．．．．．．．．．．．．．．．．．． 4 FT 978 Ins（1．470 mm） Break All Types：．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 FT 14 Ins（1．b30 mm）				

Ground clearance

Low position	D. All Types (except Safari all Types) $21 / 2$ Ins (0.065 m) Safari All Types . 3 Ins (0.075 m)
Normal position	
lst intermediate position	D. All Types (except Safari All Types) 6 3/4 Ins (0.170 m) Safari All Types . 7 5/16 Ins (0.185 m)
2nd intermediate position	D. All Types (except Safari All Types) $87 / 8$ Ins (0.225 m) Safari All Types . 9 Ins (0.228 m)
High position	D. All Types (except Safari All Types) 9 7/8 Ins (0.250 m) Safari All Types . . . : 10 Ins (0.252 m)
Turning radius	D All Types . 18 FT (5.500 m)
Rear floor height	Safari All Types . 1 FT $6 \operatorname{Ins}(0.458 \mathrm{~m}$)

Weights (CWT and Kg):

DATES	$\xrightarrow{\rightarrow 1}$	$\stackrel{\mapsto}{10: 1967}$	$\underset{2 / 1968}{\longmapsto}$	$\stackrel{\mapsto}{10 / 1968}$	15	$\stackrel{\mapsto}{10 / 1971}$	$\stackrel{\longmapsto}{10 / 1972}$
Unladen weight:							
DX.:.....	25: (1280)	$25:(1300)$				25 (1310)	26 (1320)
DJ	25.: (1275)	25 (1290)				25^{3} (1310)	26 (1320)
DX Pallas	25: (1295)	25 25				26 (1330)	$26.11340)$
DJ Pallas	$25 \frac{1}{2}$ (1290)	$25: 1300)$				26 (1330)	$26 \frac{1}{4}$ (1340)
D.IE					$26:(1340)$		
D.IE Pallas					$26:$ (1350)		
DY	25 : (1275)	$25:(1280)$					
DL	25 (1270)	25 (1270)					
DY Pallas	$25.11285)$	$25:(1290)$					
D'	25: (1280)	$25:(1280)$					
DV	24^{3} (1245)	24 (1250)		$25:(1260)$			$25^{-\frac{1}{4}} \mathbf{4}$ (1280)
DT				$25:$ (1265)			$25{ }^{3}(1310)$
DP							$25 \frac{3}{4}$ (1310)
DXF			$27:(1390)$	$27 \quad 2 .(1400)$			
\cdots	$25 \cdot(1350)$	27 : (1390)		27 (1400)			
DYF			203 (1375)	-7 (1380)			
1: 1	25: 11345!	$26 .(1375)$		27 (1380)			
Pay load: DX	$9:(480)$					$9 \underset{4}{3}(490)$	$9!(480)$
DJ.	9 (485)	$9{ }_{4}^{\frac{2}{3}}$ (490)					
DX Pallas	9 (465)	9 (470)					
DJ Pallas	9: (470)	9 (480)				9: (470)	9 (460)
					$10(500)$		
D.IE Pallas DY. ...	$\dot{9}$ (485)						
DL	$9{ }^{3}$ (490)	$9{ }_{4}^{2}$ (490)					
nY Pallas	9 (4'75)	9 (470)					
DL Pallas	9 (480)	9 (480)					
DV	$9:$	9 (480)					
DT				$9 \stackrel{5}{4}$ (495)			
DP							$9{ }_{4}^{3}(490)$
DXF			$12{ }_{4}^{3}(650)$				
DJF	12^{3}. 651)	$12{ }_{4}^{3}$ (650)	(55				
DYP		: $\cdot 650$	$122^{3}(650)$				
	123 (65:)	2. (650)					
Arax laden weight:	35 (1709)	35: (1780)				- : (1800)	
D.IE-D.IE Pallas. . . .					37 (1840)		
DY-DL-DYFallas-DLPallas	35 (1760)	35 (1760)					35 (1760)
DV	34 (1725)	34 (1730)		$34:(1740)$			
DT				35 (1760)			
DP							35:(1800)
DXF			40 (2040)	40			
DJF	39 : (2000)	40 (2040)		40 : 2050			
DYF			33 (2025)	$40(2030)$			
DLF	$39:(2000)$	$39 \stackrel{3}{\square}(2025)$		$40(2030)$			

LIST OF OPERATIONS SHOWN
 IN VOLUME $\mathrm{N}^{0} 1$ OF MANUAL 814

DS 21 vehicles with Electronic Fuel Injection(DX.IE and DJ.IE)

The operations for this type of vehicle alone have been covered.
For operations that do not appear on the list below, refer to the list of operations relating
to " D " vehicles all types.

III. DIVER CAPACITIES

OPERATION N ${ }^{0}$ D.IE - 100-00 : Churacteristics and particular features of the engine.
Op. D.IE - 100-00
-1
I. GENERAL CHARACTERISTICS
D. IE VEHICLES - ALL TYPES

The engines of vehactes whth electronic fuel differ from those of other vehules only in the following points:

1. Engine (type DX)
$\rightarrow \quad 10 / 1972$

- Fiscal rating (french) 12 CV
- Number of cylinders. 4 in line
- Cubic capacity 1.985 ce
- Bore 90 mm
- Stroke 85,5 mm

Compression ratio 9/1

Type	Brake horsepower	Maximum torque
DX 3(12N)	139 CV SAE at 5500 rpm	
	125 CV DIN at 5250 rpm	$20 \mathrm{mkg}(144.66 \mathrm{ft} \mathrm{lbs})$ at 4000 rpm (SAE)

$\longmapsto 10 / 1972$

- Fiscal rating (french) 13 CV
- Number of cylinders 4 in line
- Cubić capacity 2.350 cc
- Bore 93,5 mm
- Stroke 85, 5 mm
- Compression ratio 8,75/1

Type	Brake horsepower	Maximum torque
DX $5(29 \mathrm{~N})$	141 CV SAE at 5750 rpm	

2. Carburation

- BOSCH electronic fuel injection device.

3. Ignition

- Distributor with triggering contact cassette

II. PARTICULAR FEATURES

- The valve rockers are adjusted cold.
- The crankcase is different : the oil circuit is different and includes an oil cooler. (except on DJ.IE vehicles \longmapsto 9; 1970)

ENGINE
LONGITUDINAL SECTION
D. 10.6

ENGINE
CROSS SECTION

OIL CIRCULATION DIAGRAM

NOTE
The oil cooler is no longer fitted on DJ.IE vehicles $\longmapsto 91971$

D.IE VEHICLES ALL TYPES

ADJUSTING THE VALVE ROCKER CLEARANCES

INLET

1. Place the auxilary clutch control in the "engaged" position (only on vehicles with hydraulic gearchange)
2. Disconnect the earth cable from the battery.

3: Disconnect the inlet air manifold.
4. Remove the cylinder head cover : Disconnect the sparking plug leads.
Remove the cylinder head cover with its gasket (do not lose the seals for the spark plug wells)
5. Adjust the valve rocker clearances (cold) to : $0,15 \mathrm{~mm}(0,006 \mathrm{in})$ for the inlet valve. $0,20 \mathrm{~mm}(0,008 \mathrm{in})$ for the exhaust valve.

Valve to be fully open	Adjust the valve rockers	
	Inlet	Exhaust
Exhaust lst cylinder	3rd cylinder	4th cylinder
Exhaust 3rd cylinder	4th cylinder 2nd cylinder Exhaust 4th cylinder Exhaust 2nd cylinder cylinder	1st cylinder 3rd cylinder

EXHAUST
a) All types of vehicle except D.bw:

Turn over the engine using the starting handle.
b) D.bw Vehicles :

Place the selector lever in position " P ".
Turn over the engine using the starter motor fed by a correctly charged 6 volt battery.
IMPORTANT : Never turn over the engine using the tightening nut of the camshaft pulley.
6. Fit the cylinder head cover with its gasket. Check that the gasket is correctly positionned. Tighten the screws to $7 \mathrm{~m} \Lambda \mathrm{~N}(0,75 \mathrm{~m} \cdot \mathrm{~kg})$ ($5 \mathrm{l} / 2 \mathrm{ft} \mathrm{lbs}$)
(copper washers under the heads of the securing screws).
7. Fit the inlet air manifold.
8. Connect the spark plug leads and the earth cable of the battery.
9. Put the hydraulic clutch circuit under pressure by operating the auxiliary control (only on vehicles with hydraulic gearchange).
10. If valve rocker noise persists after adjustment, proceed as follows :

- Remove the battery
- Slacken the alternator and the H.P. pump mounting bolts. Disengage the belts from the drive pulley.
- Engage the parking brake
- Remove the nut securing the drive pulley (1) and withdraw the pulley as far as possible towards the front.
- Slacken the screws (2) securing the camshaft front bearing housing.
- Turn the crankshaft so that the exhaust valve of the 4 th cylinder is fully open.
- Tighten the screws (2) securing the bearing housing
- Put the drive pulley in place. Fit a new securing nut and tighten it by 72 to 80 m NN (7 to 8 mkg) (50 to 57 ft Ibs)
- Release the parking brake.
- Fit and tension the belts. Tighten the securing screws and nuts on the alternator and H.P. pump.
- Fit the battery and the battery frame.
- Adjust the valve rockers as indicated in $\S \S 1$ to 9

IDLING SPEED ADJUSTMENT

NOTE : This adjustment must be made with the engine hot. Use of a workshop tachometer is essential. Do not use the dashboard tachometer.

1. Connect the electric tachometer onto the terminal "Rup" or "-n of the ignition coil.
2. Adjust the screw (2) to obtain an idling speed of 750 ± 25 r.p.m.

- Ensure that the H.P. pump does not charge during the tachometer reading.
- After each adjustment of the screw (2) flip the throttle open slightly to ensure that the butterfly returns fully to its stop.
NOTE : If the idling speed is difficult to obtain or is erractic :
Check that there is no additional air inlet between :
- the throttle-housing and the air inlet manifold.
- the air inlet manifold and the air inlet hoses.

Check:

- the adjustment :
a) - Disconnect the spring (4) from the throttle-housing, and disconnect the accelerator cable from the throttle control. Hold the cable to prevent it from slipping from its guide wheel, situated under the engine mounting.
b) - Adjust the screw (5) so that, when the control (3) is in contact with the eccentric (1), the butterfly is on the point of sticking in its housing.
c) - Unscrew the screw (5) slightly and tighten up its lock-nut.
d) - Connect the accelerator cable and the spring (4).
=adjust the throttle spindle switch.(D.IE 144-0 or Op. D.IE-144-0a).
$=$ the ignition setting (by means of σ stroboscopic lamp). When the engine is turning ar $1800 \pm 50 \mathrm{rpm}$, check that the mark remains stable.

E.F.I. VEHICLES with HYDRAULIC GEARCHANGE

BASIC ADJUSTMENTS.

NOTE : It is essential to proceed in the following order :
I. ADJUSTING THE ACCELERATOR CONTROL AND THE

5863

5767

2. Adjust the accelerator control :

a) Check that the throttle opens and closes correctly. If it does not, loosen the lock-nut (8) and adjust the cable-sheath stop screw (7).
b) With the throttle closed, the clearance between the screw (10) and the stop (11) should be 1 mm .

3. Adjust the throttle spindle switch.

II. ADJUSTING THE CLUTCH CLEARANCE.
4. Pre-adjustment :

NOTE : The engine must be hot. An adjustment made with the engine cold would be incorrect when the engine is hot.

- Run the engine at idling speed.
- Put into position extension MR. 630-55/6 (if unavailable, use the starting handle extension).
- Unscrew the adjusting screw of the clutch fork by fractions of a turn at a time, until the extension just begins to turn but may be stopped by hand.

5. Adjustment :

Tighten the adjusting screw of the clutch fork by one turn, to one and a quarter turn.
Ensuring that the reverse gear engages without "grinding n .

III. CHECKING THE CLUTCH CLEARANCE.

6. Check that the fork release stpring is in good order and correctly fitted.

- Reduce the pressure in the clutch cylinder by means of the auxiliary clutch control.
- Check that the fork is free.
- If it is not, recommence the clutch clearance adjustment which will have been overdone.

IV. ADJUSTING THE IDLING SPEED.

NOTE: This adjustment must be made with the engine hot.
7. Screw in fully, without forcing, the accelerated idling adjusting screw (1).
8. Whilst adjusting the normal idling speed cut off the supply to the additional air control by blocking the hole (3) on the throttle valve housing, after removing the flexible pipe.
9. Adjust the screw (2) to obtain an engine speed of:

$$
750 \pm 25 \mathrm{rpm}
$$

Make sure that the HP pump is not functioning whilst you read the tachometer.

NOTE: It is essential to use a warkshop tachometer whose accuracy is checked periodically (at least once a year).

Do not use the dashboard tachometer.
N.B. : On vehicles manufactured after March lst 1971, the idling air circuit has been modified.

Vehicles manufactured before this date : if the regulating screw (2) becomes dirty (irregular idling), it is possible to modify these vehicles : see operation D.IE 142-6 of Manual 583-3.

V. ADJUSTING THE CLUTCH DRAG SPEED.

IMPORTANT : This adiustment must be made with the engine hot athd the echicle placedon a flat. harizontal surface.
10. Switch on the engine, engage first gear and accelerate very slowly. Clutch drag should begin at

$$
850 \pm 25 \mathrm{rpm}
$$

11. If it does not, proceed as follows : stop the engine. Loosen the lock nut (1) of the requlating screw (2) on the centrifugal governor. If clutch drag begins at a speed of less than 825 rpm , tighten the screw, loosen it if clutch drag begins at a speed of more than 875 rpm
Tighten the lock nut (1)

VI. ADJUSTING THE ACCELE RATED IDLING SPEEDS.

IMPORTANT : This adjustment must be made with the engine hot.
12. With the engine idling, undo the adjusting screw (3) For accelerated idling until a speed of $925 \pm 25 \mathrm{rpm}$ is obtained.
Ensure that the HP pump does not charge during the reading of the tachometer.

VII. ADJUSTING THE CLUTCH RE-ENGAGEMENT CONTROL.

NOTE : This adjustment should be made on the road with the engine hot.
13. If the time for re-engagement is too short, unscrew the screw (5) (anti-clockwise). If the time is too long, tighten the screw.

Pass a long screwdriver through the hole (a) in the manifold. If the pin contacts its stop before the correct adjustment is obtained :

[^0]
ADJUSTING THE IDLING SPEED

10388

10387

NOTE: : This adjustment must be made with the engine hot. Use of a workshop tachometer is essential.

- Do not use the dashboard tachometer.

1. Shunt the electric tachometer onto the terminal "RUP" or " - " of the ignition coil.
2. Position the selector lever in the position $\& N$, or ${ }^{*} P$.
3. Adjust the screw (2) to obtain an idling speed of 975 ± 25 r.p.m.

- Ensure that the H.P. pump does not charge during the tachometer reading.
- After each adjustment of the screw (2) flip the throttle open slightly to ensure that the butterfly returns fully to its stop.

NOTE : If the idling speed is difficult to obtain or is erractic :
a) Check that there is no additional air inlet between :

- the throttle-housing and the air inlet manifold.
- the air inlet manifold and the air inlet hoses.
b) Check the adjustment of the air inlet butterfly :
- Disconnect the spring (5) from the throttle-housing, and disconnect the accelerator cable from the throttle control. Hold the cable to prevent it from slipping from its quide wheel, situated under the engine mounting.
- Adjust the screw (6) so that, when the control (3) is in contact with the eccentric (4) the butterfly is on the point of sticking in its housing.
- Unscrew the screw (6) slightly and tighten up its lock-nut.
- Connect the accelerator cable and the spring (5).
c) Adjust the throttle spindle switch (see Op. D.IE 144-0 or Op. D.IE 144-0 a).
d) Adjust the ignition setting (by means of a stroboscopic lamp). When the engine is turning at 1800 1800 ± 50 r.p.m. , check that the mark remains stable.

4. Check the throttle valve damper (1) :

After the engine speed has settled at 3000 r.p.m. release the accelerator pedal.
The time taken by the engine to decelerate from 2600 to $1100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. should be $2-4$ seconds .
In order to obtain this, operate the throttle valve damper (1) on its support.

CHECKING THE ELECTRONIC FUEL INJECTION SYSTEM BY MEANS OF THE CITROEN 1494 TESTER, A VOLTMETER, AND AN OHMMETER

7898

NOTE: The 1494 Tester allows each one of the components of the injection system to be checked, with the exception of the electronic control unit itself.

This tester is sold by S.G.O.S, Company 59-63 Avenue Jean-Baptiste Clement 92100 - BOULOGNE - SUR - SEINE (TeI. 603-92-00)
Characteristics of the instruments to be used :
VOLTMETER : Resistance of the galvanometer in direct current : 10000 ohms/volt minimum, with at least two scales :
a) 0 to 3 or 5 volts D.C.
b) 0 to 15 or 30 volts D.C.

OHMMETER : Portable instrument powered by battery, not a comparison instrument of the "Weaston Bridgen or magneto type.

This ohmmeter should comprise :
a) A scale from 0 to $1 \mathrm{M} \Omega$ (1000000 ohms) minimum which will OF NECESSITY be used for checking all circuits including a contact, open or closed, i.e. to check :

- The throttle-spindle switch
- The distributor triggering contacts
- The full-load switch.
b) A scale which registers $0,1 \Omega$ for values between 0 and 5Ω. inclusive.

NOTE: The tester CENTRAD 819, the voltmeter-ohmmeter SOURIAU or CHAUVIN-ARNOUX C.D.A. 23, 1493 fulfils these conditions.
\square
DIAGRAM D.IE 511.00
ELECTRONIC FUEL INJÉCTION SYSTEM

高	

WARNING:

Certain actions must be avoided at all costs as they woula damage the components of the electronic fuel in jection system, in particular the electronic control unit :

1) Sever use a rapid charger, and never carry out arc or spot welding on the car chassis without first having disconnected BOTH battery leads and isolated the "t"earth lead.
2) Vever use a test lamp to check the continuity of a circuit.
3) Vever strike a spark to check whether a lead is live.
4) Vever start a vehicle with a voltage exceeding 12 volts.
5) Vever force a connector onto the unit concerned. Take note of the inhibitor champers.
6) Only withdrau the connectors by taking hold of the sides, and never by pulling on the leads. Checti that the rubber caps completely cover the connectors when these are fully inserted.
7) The precautions to be taken to protect the alternator also apply in this case.
8) Never alter the adjustment of the external potentiometer of one of the new control units.

If faults occuring on the vehicle seem to be attributable to the electronic fuel injection system, it is essen tial to :

- Check the ignition
- Check the basic adjustments
- Check the electronic fuel injection system.

Checking the electronic fuel injection system

Preparation :

1) Check that the battery is fully charged (use a shunted voltmeter).
2) Carry out the full test procedure in the sequence stated.
3) Refer to operation D.IE 511-00 a or D.IE 511-00 or DJ. IE 511-00 or DX.IE 511-00 for identification of the various leads.
4) Remedy any faults as they are discovered before continuing the check.
5) Check the continuity of the leads by the use of the ohmmeter
(x indicates that the circuit is broken, 0 indicates that the circuit is correct)
6) Check that the flat female connectors particularly those of the harness terminal blocks, are correctly fitted onto the contact blades of the various components. To check this, pull back the rubber covers on the terminal blocks; the connectors of these must not be pushed outside the plastic casings.

IMPORTANT : Before checking the electronic fuel injection system, it is essential to make sure that the control unit and the pressure sensor are correctly matched (see table below)
REPAIRING: When changing

- an electronic control unit : refer to column "replacement § l" of table below,
- a pressure sensor : refer to column "replacement § 2"

Manual 814-1				
	ORIGINAL EQUIPMENT		REPLACEMENT COMPONENTS (essential fitting)	
DATE	CONTROL UNIT	PRESSURE SENSOR	1) CONTROL UNIT ONLY	2) PRESSURE SENSOR ONLY
from September 1969 to July 1970	No mark \mathbf{N}^{0} DX. 144.906 A (Ref. BOSCH N° 0.280.000.011)	Standard N^{0} DX. 144.263 A (Ref. BOSCH N° 0.280.100.011)	- Fit a control unit N^{0} 5.439.822 A (Ref. BOSCH No 0.280.000.042) (or the Standard Change control unit N° 5.417.266 B) - Keep original pressure sensor	- Fit a Standard pressure sensor: N^{0} DX. 144.263 A - Keep original electronic control unit
from Iuly 1970 to December 1970	Mark: 1 yellow dot N^{0} DX. 144.906 A (Ref. BOSCH $\mathrm{N}^{\circ} 0.280 .000 .011$) \qquad	Mark: l black dot N^{0} DX. 144.263 B (Ref. BOSCH No 0.280.000.023)	- Fit a control unit \mathbf{N}^{0} ZC. 9.851.101 U (Ref. BOSCH No 0.280.000.042) (or the Standard Change control	- Fit a sensor : l black dot N^{0} DX. 144.263 B
from January 1970 to April 1971	Mark: 2 yellow dots $N^{0} 2$ D. 5.402.234 K (Ref. BOSCH $\mathrm{N}^{0} 0.280 .000 .011$)	Mark : 1 black dot N^{0} DX. 144. 263 B (Ref. BOSCH N° 0.280.100.023)	- Replace the original sensor - by a Standard pressure sensor : N^{0} DX. 144.263 A	- Keep original electronic contral unit
from April 1971 to September 1972	With external potentiometer N^{0} DX. 144.906 B (Ref. BOSCH N° 0.280.000.022) AIR TEMPERA No 1 D 5.	Standard N° DX. 144.263 A (Ref. BOSCH N° 0.280.100.011) URE SENSOR $112.360 \mathrm{~A}$	Fit a control unit : N^{0} DX. 144.906 B (Ref. BOSCH No 0.280.000.022) ('or the Standard Change control unit $N^{\circ} 5.417 .265 \mathrm{R}$) - Keep original pressure sensor	- Fit a Standard sensor : N^{0} DX. 144.263 A - Keep original electronic control unit
Since September 1972	With external potentiometer N^{0} 5.429.447 D (Ref. BOSCH N° 0.280.000.047 AIR TEMPERA $\mathbf{N}^{0} 1$ D 5.	Mark : 1 blue dot N^{0} 5.429.448 P (Ref. BOSCH N° a.280.100.048) TURE SENSOR $412.360 \mathrm{~A}$	- Fit a control unit : N^{0} 5.429.447 D (Ref. BOSCH No 280.000.047) (or the Standard Change control unit $N^{\circ} 5.436 .493$) - Keep original pressure sensor (l blue dot)	- Fit a sensor : 1 blue dot N^{0} 5.429.448 P (Ref. BOSCH No 0.280.100.048) - Keep original control unit

IDENTIFICATION OF COMPONENTS : the control units and the sensors (pressure and temperature) always bear the supplier's reference number.

NOTE :

1. A pressure sensor N° DX. 144.119 A (l green dot) has been fitted as a repair on a few vehicles only, this sensor is not on sale but it can be replace by pressure sensor N° DX. 144.263 B (l black dot)

2. New components, the Replacement Parts Dept. supplies only three types of control units ;

a) The control unit No 5.439.822 A (Bosch Ref. N° 0280.000.042) replacing control units No DX. 144.906 A (unmarked or with 1 yellow dot) and $\mathrm{N}^{\circ} 2 \mathrm{D} 5.402 .234 \mathrm{~K}$ (2 yellow dots). IMPORTANT : With control unit N° 5.439.822 A :

- a standard pressure sensor N° DX. 144.263 A must be fitted
- never fit an air temperature sensor.
b) The control unit No DX. $144.906 B$ (Bosch Ref. $\mathrm{N}^{\circ} 02.800 .000 .22$) replacing on identical control unit.
c) The control unit No $5.429 .447 D$ (Bosch Ref. $N^{\circ} 0.280 .000 .047$) replacing an identical control unit.

NOTE : These three control units are fitted with an externally controlled potentiometer : never alter its adjustment.

FIRST PART

The following checks are to be carried out with the electronic control unit disconnected.
Remove the electronic control unit.
Disconnect the harness terminal block from the electronic control unit and check, by the sleeves that the leads of the 25 way terminal block are in the correct position, referring to the wiring diagrams on pages 17 or 18 and to the table on page 19, same operation.
Connect the terminal block of the CITROEN TESTER 1494 to the terminal block of the injection system harness.

Operations to be carried out
Additional checks to be carried out
if the value stated is not obtained
1: Check the feed voltage of the electronic control unit :

- Switch on the ignition (disconnect the lead "-» or "RUP" terminal from the ignition coil to prevent the coil from heating).
- Connect the voltmeter (0-15 V scale)
a) The $"-n$ at terminal (11) of the tester (earth)
The a $+n$ at terminal 16 of the tester
The voltmeter should read 11 to 12.5 volts.
a) If the voltmeter indicates no voltage:

Check whether there is any voltage at terminals $30 / 51,86 ; 87$ of gene ral feed relay (3), using a separate voltmeter.
-terminal $30 / 51$: If voltage $=0$. The lead black 1 from the starter motor relay (8) to terminal $30 / 51$ of general feed relay (3) is $0 / \mathrm{C}$ or disconnected.

- terminal 86 : If voltage $=0$:
. The ignition switch A is defective
. Or one of the excitation leads on relay (3) is O / C or disconnected.
- either the feed wire from the coil (15) to terminal (15) of the vehicle harness.
- or the lead Violet 3 from the coil (15) to terminal 86 of the relay (3) (3) (mauve).
-terminal 87 : If voltage $=0$. The general feed relay (3) is not operating.
. Lead yellow 26 from terminal 85 of the relay (3) to earth 26 , on regulator, O / C or disconnected.
. Relay is defective.
- If there is voltage at terminals $30 / 51,86,87$ of relay (3):
. Lead white (2) from terminal 87 of relay (3) to yellow-brown 2 of electronic control unit (18) terminal 16 is O / C or disconnected.
. Lead yellow-blue 26 from electronic control unit (18) to terminal 11 to earth 26 on the regulator is O / C or disconnected.
b) If the voltmeter indicates less than 11 volts.

1) Check whether there is any contact resistance in the leads:

- Black 1 from starter motor relay (8) to terminal $30 / 51$ of relay (3).
- White 2 from terminal 87 of relay (3) to terminal 16, yellow-brown 2 of electronic control unit (18).
- Yellow-blue 26 from electronic control unit (18) to earth 26 on the regulator.

2) Using a separate voltmeter, check whether there is any contact resistance at the points of general feed relay (3) (voltage drop between terminals $30 / 51$ and 87).

Operations to be carried out
b) The " - " at terminal 11 of the tes ter (earth).
The atn at terminal 24 of the tes ter.
Voltmeter should read 11 to 12.5 volts.
Switch off the ignition (connect the lead to the coil)

2. Check the starting voltage

Connect the voltmeter (e.g. 0-15 volt scale).

- the " $4-n$ at terminal 11 (earth)
- the " + " at terminal 18.

Operate the starter motor control
Voltmeter must read 9 volts min.

Additional checks to be carried out if the value stated is not obtained

Check lead white 2 from terminal 87 of general feed relay (3) to brown 2 of the electronic control unit (18) terminal 24.
a) If the voltmeter shows no voltage, but the starter operates:

Check whether there is any voltage at terminals $30 / 51$ and 85 of impulse relay (5).
Terminal 30/51: if no voltage. The lead black 1 from starter relay (8) to black 1 terminal $30 / 51$ of relay (5) is O / C or disconnected.
Terminal 85: if no voltage. The lead black 1 from starter relay (8) to yellow 1 terminal 85 of relay (5) is O / C or disconnected.
Check the lead mauve 6 from terminal 86 of the relay (5) to connection of red 6 with vehicle wiring harness. (lead from starter switch B). Check whether there is voltage at terminal 87 of relay (5). If voltage is 0 when the starter motor is operated, replace the impulse relay (5). Check lead, white 7, from relay (5) terminal 87 to violet 7 of the electronic control unit (18) terminal $18(\mathrm{O} / \mathrm{C}$ or disconnected).
b)If the voltmeter shows no voltage and the starter does not operate :

In addition to the above test :

- The starter motor switch B and the starter relay (8)
- The lead red 6 from the injection system harness to the starter motor switch B
- The starter switch earth through the charge warning light relay' (terminal L on regulator).
- The starter motor
c) If the voltmeter indicates less than 9 volts:
- Check the voltage drop across the contacts of the starter motor relay (8) and in the connection of the starter motor feed cable on the solenoid. Use a separate voltmeter and measure the voltage at the atn terminal of the solenoid when the starter motor is operated.
- Check the voltage drop across the contacts of the impulse relay (5). Use a separate voltmeter and check the voltage at terminal $30 / 51$ and the voltage at terminal 87 of the impulse relay (5) :
The voltage at terminal 87 of the impulse relay (5) must be the same as that at terminal 18 of the electronic control unit (read on the tester volt scale); if it is not, the lead white 7 from terminal 87 of the impulse relay (5) to violet 7 of terminal 18 of the electronic control unit has a high resistance.
- Check the starter motor.

Operations to be carried out	Additional checks to be carried out if the value stated is not obtained
b) The "-» at terminal 11 of the tes ter (earth). The "+" at terminal 24 of the tes ter. Voltmeter should read 11 to 12.5 volts. Switch off the ignition (connect the lead to the coil)	Check lead white 2 from terminal 87 of general feed relay (3) to brown 2 of the electronic control unit (18) terminal 24.
2. Check the starting voltage	
Connect the voltmeter (e.g. 0-15 volt scale). - the "-" at terminal 11 (earth) the " + " at terminal 18 . Operate the starter motor control Voltmeter must read 9 volts min.	a) If the voltmeter shows no voltage, but the starter operates Check whether there is any voltage at terminals $30 / 51$ and 85 of impulse relay (5). Terminal $30 / 51$: if no voltage. The lead black 1 from starter relay (8) to black 1 terminal $30 / 51$ of relay (5) is $0 / \mathrm{C}$ or disconnected. Terminal 85: if no voltage. The lead black 1 from stater relay (8) to yellow 1 terminal 85 of relay (5) is $0 / \mathrm{C}$ or disconnected. Check the lead mauve 6 from terminal 86 of the relay (5) to connection of red 6 with vehicle wiring harness. (lead from starter switch B). Check whether there is voltage at terminal 87 of relay (5). If voltage is 0 when the starter motor is operated, replace the impulse relay (5). Check leart, white 7 , from relay (5) terminal 87 to violet 7 of the electronic control unit (18) terminal 18 ($0 / \mathrm{C}$ or disconnected). b)/f the voltmeter shows no voltage and the starter does not operate : In addition to the above test : - The starter motor switch B and the starter relay (8) -The lead red 6 from the injection system harness to the starter motor switch B The starter switch earth through the charge warning light relay' (terminal L on regulator). The starter motor c) If the voltmeter indicates less than 9 volts : Check the voltage drop across the contacts of the starter motor relay (8) and in the connection of the starter motor feed cable on the solenoid. Use a separate voltmeter and measure the voltage at the " + " terminal of the solenoid when the starter motor is operated. Check the voltage drop across the contacts of the impulse relay (5). Use a separate voltmeter and check the voltage at terminal $30 / 51$ and the voltage at terminal 87 of the impulse relay (5): The voltage at terminal 87 of the impulse relay (5) must be the same as that at terminal 18 of the electronic control unit (read on the tester volt scale) ; if it is not, the lead white 7 from terminal 87 of the impulse relay (5) to violet 7 of terminal 18 of the electronic control unit has a high resistance. - Check the starter motor.

DJ.IE VEHICLES manufactured since 26th April 1971

On these vehicles, the starter motor and impulsion relays are no longer fitted (for the identification of the leads, refer to the diagrams showing the principles on the following page and to operation DJ.IE 511-00).

For these vehicles, the checking of the starting voltage is as follows:
(refer to diagram DJ.IE 511-00 and to the lead identification table on page 21).

2. Checking the starting voltage

Connect the voltmeter
(e.g 0-15v scale)

- Negative to terminal 11 (earth)
- Positive to terminal 18

Activate the starter motor.

Should read 9 volts minimum
a) The starter motor uorks and the voltmeter shows no voltage :

Check :

- the shunt, on the leads marked Mv 18 and Bc 18
- the lead ($\mathrm{Bc} 18,18$) from the shunt to terminal 18 of the electronic control unit (18) (interrupted)
b) The voltmeter shows no tension and the slarter motor does not work :

In addition to the previous check test :

- the supply lead of starter switch B
(Free lead to the supply lead of the light switch).
- the starter switch B
- the connecting lead R 18 from the harness of i.. electronic fuel injection system to the starter switch B
- the starter motor.
c) The voltmeter shows a voltage of less than 9 volts:
- Check the voltage drop in the connection of the starter motor supply cable. Use the voltmeter to measure the voltage at the " + " terminal of the battery and the voltage at the " + " terminal of the solenoid, when the starter motor is activated.
- Check the voltage drop in the connections :
- of the starter switch supply lead B
(Free lead onto the light switch supply lead)
- the contacts of the starter switch B
- the connecting lead $\underset{\sim}{R} 18$ from the harness of the electronic fuel injection system to the starter switch B
- the lead ($\mathrm{Bc} .18,18$) of the shunt to the terminal 18 of the electronic control unit (18).

DIAGRAMS SHOWING THE PRINCIPLES OF THE STARTER MOTOR CONTROL

D.IE Vehicles all types
DI.It Vehicles produced up to dpril 1971

DJ.IE, manufactured since tpril 1971
The starter motor and impulsion relays are no longer fitted.

KEY:
NOTE : The markings of the components are identical to those used in the wiring diagrams
2. Battery
3. General supply relay
4. Fuel pump relay
5. Impulsion relay
7. Thermal time switch (cold start)
8. Starter motor control relay
9. Cold start injector
15. Ignition coil
18. Electronic control unit
19. Fuel pump
A. Vehicle ignition contact
B. Starter motor switch
C. Charging warning light
D. Relay voltage regulator relay
E. Starter motc:

Operations to be carried out	Additional checks to be carried out if the value specified is not obtained
3: Check the insulation of the pressure sensor	
- Connect the ohmmeter (1M Ω scale) a) between terminals 11 and 7. b) between terminals 11 and 8 . Pointer must read ∞	a) If the ohmmeter indicates zero resistance (short circuit): Withdraw the connector from the pressure sensor (17). Two possibilities now exist : - If the ohmmeter now indicates $« \infty$, resistance : the pressure sensor is defective; replace it. If the ohmmeter now indicates zero resistance : one or several of the following leads are short-circuited: - Green-grey 8 from terminal 7 of the electronic control unit (18) to to grey 8 of the pressure sensor (17) - Green-brown 9 from terminal 8 of the electronic control unit (18) to brown 9 of the pressure sensor (17) - Yellow-violet 10 from terminal 10 of the electronic control unit (18) to violet 10 of the pressure sensor (17) - Yellow-green 11 from terminal 15 of the electronic control unit (18) to yellow 11 of the pressure sensor (17) Replace the injection system wiring harness b) If the ohmmeter indicates a resistance less than ∞, but not zero (faulty insulation): Carry out the same check as above.

4: Check the resistance of the winding

- Connect the ohmmeter
a) Primary winding:
- between terminals 7 and 15
a) Check that the connector on the pressure sensor is correctly fitted.
b) If the ohmmeter indicates a resistance considerably less than the value specified:
Withdraw the connector from the pressure sensor :
- If the ohmmeter now indicates ∞, the pressure sensor is defective; replace it.
- If the ohmmeter still indicates a resistance con siderably less than the specified value, replace the injection system wiring harness.
c) If the ohmmeter: indicates zero resistance :

Withdraw the connector from the pressure sensor :

- if the ohmmeter now indicates ∞, the pressure sensor is defective; replace it.
- If the ohmmeter now indicates 0 , replace the injection system wiring harness.
d) If the ohmmeter indicates a resistance considerably higher than the specified value :
Check the following leads and their connections for excessive resistance:
Green-grey 8 to grey 8 , yellow-green 11 to yellow 11, from terminals 7 and 15 on the electronic control unit (18) to the pressure sensor (17).
e) If the ohmmeter indicates ∞ resistance:

Withdraw the connector from the pressure sensor and connect a jumper lead across the outer terminals (yellow and grey) of the connector:

- If the ohmmeter now indicates 0 , the pressure sensor is defective, replace it.
- If the ohmmeter now indicates ∞, check the leads green-grey 8 to grey 8 , yellow-green 11 to yellow 11, and their connections.

Operations to be carried out	Additional checks to be carried out if the specified value is not obtained
b) Secondary winding : - between terminals 8 and 10. Should read 350Ω	Check identical to a), b), c). d) If the ohmmeter indicates a resistance considerably higher than the specified value: Check the following leads and their connections for excessive resistance: Green-brown 9 to brown 9, and yellow-violet 10 to violet 10, from terminals 8 and 10 of the electronic control unit (18) to the pressure sensor (17). e) If the ohmmeter indicates ∞ : Withdraw the connector from the pressure sensor and connect a jumper lead between the inner terminals (violet and brown). Violet Brown - If the ohmmeter now indicates 0 . the pressure sensor (17) is defective; replace it. - If the ohmmeter now indicates ∞, check the leads green-brown 9 to brown 9 and yellow-violet 10 to violet 10 , and their connections.

5. Check resistance of triggering contacts in distributor (1):

- Connect the ohmmeter (OF NE. CESSITY ON THE 1 M Ω min)
a) Between terminals 12 and 21 Operate starter motor to turn ${ }^{\circ}$ the distributor
The ohmmeter pointer should oscillate.
b) Between terminals 12 and 22 Operate starter motor to turn the distributor
The ohmmeter pointer should oscillate.

If the ohmmeter pointer does not oscillate, or if it remains at either ∞ or 0 :

- Check that the connector on the distributor is correctly fitted.
- Replace the triggering contact cassette.

6. Check the resistance of the throttle-spindle switch (10) :

(On vehicles with hydraulic gear selection, place manual clutch control in "engaged" position)

Connect the ohmmeter (OF NE. CESSITY ON SCALE $1 M \Omega$ min.)
a) Between terminals 20 and 14 Depress the accelerator pedal slowly to the end of this travel.
Ohmmeter pointer should show 8 to 10 oscillations between 0 and ∞
b) Between terminals 9 and 14 Carry out same check as above.

- Check that the connector on the throttle-spindle switch (10) is correctly fitted, if still incorrect :
- Fit a new throttle-spindle switch (10) and adjust it (see paragraph 6 opposite).

Operations to be carried out
Additional checks to be carried out if the specified value is not obtained

7. Check the throttle-spindle switch (10)

Connect the ohmmeter (OF NE
CESSITY ON SC ALE $1 \mathrm{M} \Omega \mathrm{min}$.)
Between terminals 17 and 14 a) Accelerator pedal released:

Should read 0

1) Accelerator pedal released

a) If the ohmmeter indicates ∞ the throttle-spindle switch (10) is incorrectly adjusted. Adjust the switch as follows :

- With the throttle closed (accelerator pedal released) the contacts of the throttle-spindle switch (10) must be closed. They must open for a movement of 2° of the throttle.
To facilitate this adjustment the switch mountings are graduated (1 division $=2^{\circ}$)
- Slightly slacken the two retaining screws (1) for the throttle-spin die switch (10).
- With the tester ohmmeter indicating ∞ and the throttle in idling position, place a feeler gauge of 0.7 mm between the eccentric adjuster of the throttle stop and the lever on the throttle spindle. Then gently turn the switch (10) until the exact moment when the contates close (the pointer then indicates 0). Tighten the two switch retaining screws.
- Check the adjustment : with the accelerator pedal released, place a feeler gauge of 0.7 mm as above : the pointer must indicate 0 .
Insert a feeler gauge of 1.4 mm : the pointer must indicates ∞.
b) If the ohmmeter still indicates ∞ :

Check that the connector on the throttle-spindle switch (10) is properl fitted.
HNA esscend.

c) If the ohmmeter still indicates ∞

- Check : The lead white 16 between the switch (10) and the elec tronic control unit (18) terminal 17 (white 16) The lead grey 15 between switch (10) and the electronic control unit (18) terminal 14 (yellow-grey 15).

Operations to be carried out

> Additional checks to be carried out if the specified value is not obtained
7. Check the throttle-spindle switch (10)

Connect the ohmmeter (OF NE
CESSITY ON SC ALE $1 \mathrm{M} \Omega \mathrm{min}$.)
Between terminals 17 and 14
a) Accelerator pedal released:

Should read 0

Accelerator pedal released
a) If the ohmmeter indicates ∞ the throttle-spindle switch (10) is incorrectly adjusted. Adjust the switch as follows:

- With the throttle closed (accelerator pedal released) the contacts of the throttle-spindle switch (10) must be closed. They must open for a movement of 2° of the throttle.
To facilitate this adjustment the switch mountings are graduated (1 division $=2^{\circ}$)
- Slightly slacken the two retaining screws (1) for the throttle-spin dle switch (10).
- With the tester ohmmeter indicating ∞ and the throttle in idling position, place a feeler gauge of 0.7 mm between the eccentric adjuster of the throttle stop and the lever on the throttle spindle. Then gently turn the switch (10) until the exact moment when the contates close (the pointer then indicates 0). Tighten the two switch retaining screws.
- Check the adjustment : with the accelerator pedal released, place a feeler gauge of 0.7 mm as above : the pointer must indicate 0 . Insert a feeler gauge of 1.4 mm : the pointer must indicates ∞.
b) If the ohmmeter still indicates ∞ :

Check that the connector on the throttle-spindle switch (10) is properly fitted.
If it is correct :

- Withdraw the connector from the throttle-spindle sw 1 (10) and connect a jumper lead between terminals grey and white of the connector.
c) If the ohmmeter still indicates ∞
- Check : The lead white 16 between the switch (10) and the elec tronic control unit (18) terminal 17 (white 16)
The lead grey 15 between switch (10) and the electronic control unit (18) terminal 14 (yellow-grey 15).

Operations to be carried out
b) With accelerator pedal slightly depressed (butterfly opening $=2^{\circ}$)

OHMMETER : must read ∞.

Additional checks to be carried out if the specified value is not obtained
d) Refit the connector on the switch and adjust the switch (10) as in § α above.
e) If the ohmmeter still indicates ∞ Replace the throttle-spindle switch (10).
2. Accelerator pedal slightly depressed
(butterfly opening $=2^{\circ}$)
a) If the test ohmmeter indicates 0 : the throttle-spindle switch (10) is incorrestly adjusted. Re-set it (see § 7-1 a)
b) If the ohmmeter still indicates 0 : withdraw the connector from the throttle-spindle switch (10).
c) If the ohmmeter still indicates 0 . replace the injection system wiring harness.
d) Refit the connector and proceed as in § a above.
e) If the ohmmeter still indicates 0 : replace the throttle-spindle switch (10).
8. Check the resistance of the thermal sensor (6):

Connect the ohmmeter between terminals 11 and 23.

Ohmmeter should read 2500Ω

(this value corresponds to $20^{\circ} \mathrm{C}$. At a higher temperature resistan ce is lower).
a) If the ohmmeter indicates ∞

Check that the connector is properly fitted to the thermal sensor. If it is correct, withdraw the connector from the thermal sensor (6) and connect lead green 18 to earth.

- If the ohmmeter indicates 0 . check the lead 26 between the thermal sensor (6) and earth on the regulator.
- If it is correct, replace the thermal sensor (6).
- If the ohmmeter indicates \times, check the lead, green 18 to green 18 , between terminal 23 on the electronic control unit (18) and the thermal sensor (6).
b) If the ohmmeter indicates 0 :

Withdraw the connector from the thermal sensor (6).

- If the ohmmeter indicates 0 , check the lead, green 18 to green 18 , between between terminal 23 of the electronic control unit and the thermal sensor (6).
- If the ohmmeter indicates ∞, replace the thermal sensor (6).

9. Check the winding of the injectors

Connect the ohmeter sucessively to terminals :
11 and 3 injector of cylinder 1
11 and 4 injector of cylinder 3
11 and 5 injector of cylinder 2
11 and 6 injector of cylinder 4
Read 2,4 Ω (this value corresponds to $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
a) If the ohmmeter indicates 0 , or a resistance considerably lower than 2.1Ω :
Withdraw the connector from the correspomding injector, If the ohmmeter now indicates x, replace the injector.

- If the ohmmeter indicates 0 or a value considerably lower than 2.4 : replace the injection system haress.
D.IE VEHICLES ALL TYPES (produced since 5th April 1971)

The electronic fuel injection control has been modified as follows on these models :

- Addition of an air temperature sensor fitted on the air filter.
- Modification of the electronic control unit: (see pages $2 a$ and 2 b)
- Modification of the injection system wiring harness (see operations DX.IE 511-00 and DJ.IE 511-00)

On these vehicles the checking of the electronic fuel injection system differs only to the extent that the air temperature sensor must also be checked.

For these vehicles ofter checking the resistance of the thermal sensor (§8, page 8), the resistance of the air temperature sensor must also be checked :
(refer to diagrams DX.IE 511-00 and DJ.IE 511-00 and to the lead identification tables on pages 20 and 21).

Connect the ohmeter to terminals 11 and 1

Should read $300 \Omega \pm 40 \Omega$

(for a temperature of $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
When the temperature is higher, the resistance is weaker, and vice verso.
a) Ohmmeter indicates ∞ :

Check the positioning of the connector on the air temperature sensor. If it is correct, remove the connector of the air temperature sensor (21) and earth lead (1) :
-If the ohmmeter indicates 0 : check lead 11 between the air temperature sensor and the earth on the relay voltage regulator. If it is in order, replace the air temperature sensor (21).

- If the ohmmeter indicates ∞ : check the lead 1,1 between terminal (1) of the control unit (18) and the air temperature sensor (21).
b) The ohmmeter indicates 0 :

Remove the connector from the air temperature sensor (21):

- If the ohmmeter indicates 0 : check the lead 1,1 between terminal (1) of the control unit and the air temperature sensor (21).
- If the ohmmeter indicates ∞ : replace the air temperature sensor (21).

Operations to be carried out	Additional checks to be carried out if the specified value is not obtained
	b) If the tester ohmmeter indicates ∞, or a value considerafly higher than 2.4: Check that the connector is properly fitted on the injector. If it is correc tly fitted, withdraw the connector from the corresponding injector and connect a jumper lead across the terminals. The ohmmeter should indicate 0 . E.g. $\mathrm{N}^{\circ} \mathrm{l}$ cylinder If the ohmmeter indicates ∞, or α value considerably higher than 2.4Ω : Check the feed wire and the earth lead of the injector in question and the general earth lead. E.g. $\mathrm{N}^{\circ} 1$ injector : - Lead between electronic control unit (18) terminal 3 (green-white 22) and injector (11) of the lst cylinder (white 22). - Earth lead 26 of the corresponding injector and general earth lead (26) at the regulator : Refit the connector on the injector. If the ohmmeter indicates ∞ or a value considerably higher than 2.4 , replace the corresponding injector.
10. Check the full-load switch.	
Connect the ohmmeter (OF NE- CESSITY ON SCALE 1 M Ω min.) Between terminals 2 and 11. Should read 0 Withdraw the connector of the full-load switch. Should read ∞. Refit the connector.	a) If the ohmmeter indicates ∞ : Check that the connector on the full-load switch (16) is properly fitted. If it is correct, withdraw the connector from the full-load switch (16) and connect a jumper lead between the terminals. If the pointer indicates ∞ : Check:-The lead between the electronic control unit (18) terminal 2 (red-blue 12) and the full-load switch (16) (blue 12). - The lead 26 between the full-load sw.rh (16) and the earth 26 on the regulator. -The earth 26 on the regulator. If these leads and the earth (26) are correct, the full-load switch is defective; replace it. b) If the pointer indicates 0 . Replace the injection system harness.

Operations to be carried out

Additional checks to be carried out if the specified value is not obtained

11. Check the fuel-feed pres sure :

First remove the cold start injector (9) from the induction air manifold, and disconinect the fuel pipe (1) from the injector (9).

- Connect the pressure gauge A onto the cold start injector (9) as shown in the photograph above.
- Use the 3-way union C, flexible pipes B and D and "quick-acting clips» E.
NOTE : A, B, C, D, E are supplied with the tester 1494.

Suitch on the ignition,
a) Press the push-button P on the Tester

PRESSURE CAUGE : should read 1.92 to 2 bars (27 osi to $28 \mathrm{l} / 2 \mathrm{psi}$)
a) If the gauge registers O (the fuel pump is not working) Check that the 2-pole connector on the fuel pump is properly fitted. If so, withdraw the 2-pole connector from the pump and measure the voltage across the terminals using a separate voltmeter.

- If the voltmeter indicates 12 volts. The fuel pump is defective; replace it.
- If the voltmeter indicates 0 volts. Listen to determine whether the fuel pump relay (4) is operating when the button " P " is pressed on the tester.
- if the fuel pump relay (1) is operating :

Check the voltage at terminal 87 of relay (4) when button " P " of the tester is pressed.
If voltage $=0$, check that there is current at terminal $30 / 51$. If there is, replace fuel pump relay (4).

- If voltage $=12$ volts, check leads and connections for continuity : . Lead white 5 from fuel pump relay (4), terminal 87, to fuel pump connector (19).
. Lead 27 from fuel pump connector (19) to earth (on the chassis side-member).
If leads, white 5 and 27, and thei connections are not faulty, the fuel pump relay (4) is defective. Replace it.

Operations to be carried out	Additional checks to be carried out if the specified valueis not obtained
13. Check the action of the cold-start injector and of the time-delay thermal switch.	

- Switch on the ignition

- Pressurise the fuel circuit by brie fly pressing button P.
- Activate the starter motor after having placed a container under the injector.
- The cold-start injector should function (fuel-spray).
- Remove the gauge with the flexible pipes.
- First connect the feed pipe of the cold-start injector and fit the injector onto the air inlet manifold.

1) If the engine coolant temperature is higher than $37^{\circ} C$ (the cold-start injector will not operate) ($37^{\circ} \mathrm{C}=98,6^{\circ} \mathrm{F}$)
If this is the case, disconnect the lead grey 17 from the thermal switch
(7) for cold-starting and earth it. The cold-start injector should operate in these conditions for the time that the starter motor is activated. If it does not:

Check : - The lead between the impulse relay (5) terminal 87 (white 7) and the electronic control unit (18) terminal 18 (violet 7).

- The lead between the impulse relay (5) terminal 87 (white 7) and the cold-start injector (violet 7)
- The lead between the impulse relay (5) terminal 87 (white 7) and the thermal switch (7) (blue 7)
- The lead between the cold-start injector (9) (grey 17) and the thermal switch (7) (grey 17)

Check the resistance of winding of cold-start injector (9):
It should be 4.2 ohms at $20^{\circ} \mathrm{C}$. If not, replace the cold-start injector (9). ($20^{\circ} \mathrm{C}=68^{\circ} \mathrm{F}$)
2) If the engine coolant temperature is less than $16^{\circ} \mathrm{C}$ (the cold-start injector will operate $).\left(16^{\circ} \mathrm{C}=60.8^{\circ} \mathrm{F}\right)$

If it does not operate, carry out the above check (§ 13-1)
With the thermal switch (7) connected, if the cold-start injector (9) still do does not operate, the thermal switch (7) is defective. Replace it.

Operations to be carried out	Additional checks to be carried out if the specified value is not obtained
	c) If the pressure drops to 0 : - Check the fuel tightness of the cold-starting injector. Look to determine whether fuel is escaping. If it is, replace the injector. - Check the fuel tightness of the unions of the fuel feed pipes, on the injectors and on the fuel pressure regulator. - Check the fuel-tightness of each injector, eliminating them one by one. To do this: - Disconnect the fuel feed manifold from the rubber attached to the injector to be checked and plug the end. (use a flexible pipe, inside $b=7$ mm , length $=50 \mathrm{~mm}$, plugged at one end. Ensure fuel-tightness at the plug and on the fuel-feed manifold by "quick-acting" clips. *) - Re-pressurise the circuit as shown above. I/ the pressure does not drop: the injector being checked is leaking and mus must be repaired. If the pressure still drop to 0 : check the remaining injectors If the pressure drops to 0 after all the injectors have been checked and eliminated: the pressure regulator is leaking and must be replaced. Remove clamp 3903-T

12. Check the action of the injectors.
suitch on the ignition:

- Check the warning-lamp bulb ($12 \mathrm{~V}-4 \mathrm{w}$) of the Tester. To do this fit the flying-lead to terminal 11 and press push-button I; it should light up. If it does not, replace it.
- Pressurise the fuel circuit by briefly depressing button " P ".
- Fit the flying-lead in turn to each of the male pins marked 3,4,5,6 corresponding to the injectors of cylinders $N^{\circ} 1,2,3$ and 4 respectively.

E.g. : Connect onto 3.

Quickly depress button 1.

During the very short period of injector operation :

- The warning lamp should light and enable the passing of current into the injector in question to be checked.
- The pressure gauge needle should descend (pressure drop). It stops when the button 1 is released.

If the pressure does not drop: replace the injector in question.

NOTE :
This check should not be carried out several times in succession, or the engine may "flood"

1. SECOND PART

The following checks are carried out without the Tester 1494, the electronic control unit being connected as normally.
14. Check the movement of the triggering contacts in the distributor.

Put the intermediary wiring harness (5) into position between the connector ($\cdot 6$) of the triggering contact holder and the vehicle harness. Ensure that the inhibition chamfers "an on the 3 -way connectors (3) and (4) correspond.

- Run the engine at 1500 rpm approx.
- Connect the voltmeter.

The "-n on plug (2) (black)
The $"+n$ in turn on plugs (1) (red).
The pointer moves first towards the max. end of the scale, then oscillates about an average reading of 2.8 volts approx. Take note of this average reading for each of two red plugs (1).
The variation between the two average readings must be : 0.2 volts.
If the variation exceeds 1 volt : the triggering contacts are defective. Replace the contact holder. Remove the intermediary harness (5) and put the connector and the rubber cap into position on the distributor triggering contact holder.
15. Check the operation of the throttle-spindle switch.

With the engine idling, disconnect from the air inlet manifold, the rubber pipe leading to the supplementary air control : the engine speed should oscillate between 1100 and 1800 rpm .
Slightly open the throttle; the engine speed should stabilise.
If it does not, adjust the throttle-spindle switch (see § 7-1a)

DIAGRAM D.IE 511-00 a

ELECTRONIC FUEL INJECTION SYSTEM

(D.IE Vehicles - all types - produced between March 1970 and April 1971)

16. Check the full-load switch (16).

Withdraw the wiring connector from the full-load switch.
Remove the full-load switch from the chassis leaving the rubber pipe on the full-load switch connected to be air-inlet manifold.

1) Start the engine.

With the engine at idling speed, connect the ohmmeter (WHICH MUST BE ON SCALE 1 M Ω minimum) to the two terminals of the full-load switch.
The ohmmeter must read ∞
2) Stop the engine, disconnect the flexible pipe from the full-load switch.

The ohmmeter must read 0 .
If it does not, the full-load switch is defective and must be replaced.
NOTE :
a) If the flexible pipe is disconnected from the full-load switch when the engine is running at idling speed, the idling will "hunt» due to too rich a mixture.
b) If the flexible pipe of the pressure sensor and that of the full-load switch are reversed on the inlet housing, flat-spots will appear during engine acceleration.

IMPORTANT NOTE :

The tests carried out above enable every part of the electronic fuel injection system to be checked except for the electronic contral unit itself.

If no fault is found during the tests, the electronic control unit should not yet be pronounced faulty.

1) First check the five earth leads careffully:

- From the voltage regulator "a»
- From the injection system harness «b"
- From the battery "c"
- From the electrical fuel pump «d»
- From the car chassis "d"

See illustration on opposite page. terminals.
2) Since it is difficult to check the contacts of the harness connections on the various injection system components, it is necessary to carry out a test-run with a new wiring harness.
3) Carry out a road test. If trouble persists; disconnect the excitation lead (yellow sleeve) from the alternator, insulate it and repeat the road-test:

If the trouble disappears : either the alternator or the regulator is defective. Check them and replace whichever is faulty.

If the trouble persists : the electronic control unit is defective and must be replaced.

Manual 814-1
5875

D. IE VEHICLES (All Types) produced between March 1970 and April 1971

Wiring diagram D. IE 511-00 a differs from the wiring diagram D. IE 511-00 only in the following points :

1) Wiring harness in two parts : a 12-way terminal block with pins (20) links these two parts :
2) Marking of the various leads is partly modified : self-adhesive numbers replace the colour identification marks.

The check for the electronic fuel injection system described in this section corresponds to wiring diagram D. IE 511-00. To apply this section to the new wiring diagram D. IE 511-00 a it must be remembered that the wires correspond as follows :

NOTE: The figures in brackets show the markings of the leads of the terminal block (20).

DIAGRAM DX.IE - 511-00
ELECTRONIC FUEL INJECTION SYSTEM

NOTE: : Keep this page open whilst

 reading the operation

DJ.IE VEHICLES $\longmapsto 9 / 1972$

"DECEL" circuit :

Vehicles DJ.IE released Since September 1972,
To comply with anti-pollution standards, a supplementary supply of air is accomplised when releasing the accelerator (butterfly air intake closed). During deacceleration, there is no injection cut-out like on the preceded models. Supplementary air intake is by way of a PILOT valve, having a favourable sweeping effect to burn the exhaust gases. Consequently, when deaccelerating, the injection is held, and the fuel injected is proportioned according to the quantity of air intake accepted by the "DECEL system" (PILOT valve) to allow a perfect combustable mixture.

NOTE: On vehicles DX.IE, the anti-pollution circuit is constituted by the idling system being accelerated. On these models released since September 1972, as on models DJ.IE. These is no injection cut down. The supplementary air intake system is cut-off when releasing the accelerator and pressing on the foot brake.

17. Anti-pollution supply checker "DECEL":

Bring the engine speed to about $2500-3000 \mathrm{rpm}$, and disconnect the tube " α " from the PILOT valve (2)

With the index finger, check to see if the depression (suction) can be felt, if not, check the pipes B and C and their connection. If these are in good condition, the PILOT valve must be faulty, replace it.

DIAGRAM DJ.IE 511-00
ELECTRONIC FUEL INJECTION SYSTEM
(DJ.IE vehicles produced since April 1971)
(see operation DJ.IE 511-00)

D.IE VEHICLES (all types) produced since dpril 1971

The wiring diagrams DX.IE 511-00 and DJ.IE 511-00 of these vehicles differ from wiring diagram D.IE 511-00 only in the following points (vehicles introduced before March 1970) :

1) The wiring harness is in two parts. A 12 -way terminal block with pins (20) connects the two parts.
2) The addition of an air temperature sensor (modified control unit).
3) The starter motor and impulsion relays are no longer fitted.
4) The markings of the various wires have been partly modified. Self adhesive numbers replace the colour markings.

The check for the electronic fuel injection system described in this section corresponds to the wiring diagram D.IE 511-00. In order to apply this to the new wiring diagrams DX.IE 511-00 and DJ.IE 511-00, it must be remembered that the leads correspond as follows.

DIAGRAMS		
D.IE 511.00	DX.IE 511.00	DJ.IE 511-00
Jl, N1	J $25, \mathrm{~N} 25$	N, J, (insulated)
J - Mr 2, Mr 2, Bc 2, Mv $2 \ldots \ldots \ldots \ldots \ldots . .$.	16, 24, Be 16, Mv 16	16, 24, Bc 16, Mv 16
	Mv 26, Mv 26	Mv 26, Mv 26
J 4, J 4.	J 19, 19	J 19, 19
$\mathrm{Bc} 5, \mathrm{Bc} 5$.	Bc 27, Bc 27	Bc 27, Bc 27
Mv 6, R 6	Mv 28, R 28	Mv 18, R 18
Vi 7, Bc 7, Bl 7.	18, Bc 18 (13), Bl 18	18, Bc 18 (13), Bl 18
Ve - Gr 8, Gr 8	7,7	7,7
Ve - Mr 9, Mr 9	8,8	8,8
J-Vi 10, Vi 10	10, 10	10, 10
J - Ve 11, J 11	15, 15	15, 15
R-Bl 12, Bl 12.	2,2	2, 2
J - Be 13, J 13	9,9	9,9
Bl 14, Bl 14..................................	20, 20	20, 20
J - Gr 15, Gr $15 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	14, 14	14, 14
Bc 16, Bc 16	17, 17	17, 17
Gr 17, Gr 17	35, (35), Gr 35	35, (35), Gr 35
Ve 18, Ve 18	23, (23), 23	23, (23), 23
J-R 19, J 19	12, (12). 12	12, (12), 12
	21, (21), 21	21, (21), 21
	22. (22), 22	22, (22), 22
Ve - Bc 22, Bc 22.	3, (3), 3	3, (3), 3
Ve - Bl 23, Bl 23	5, (5), 5	5, (5); 5
Ve - Vi 24, Vi 24	4, (4), 4	4, (4), 4
Ve - R 25, R 25.	6, (6), 6	6, (6), 6
J-B1 26, J 26, 26.	11, J 11, (11), 11	11, J 11, (11), 11
27...	29	29
Air temperature sensor (21).................	1	1

NOTE: The figures in brackets indicate the markings of the terminal block leads (20).

CHECKING THE ELECTRONIC CONTROL UNIT USING BOSCH EFAW 228 - 510 TEST UNIT

EFAW 228-S 11 : Markings in French
EFAW 228-S 10 : Markings in English
EFAW 218 : Markings in German

NOTE: The test unit can be used to check every component of the electronic fuel injection except the electronic control unit itself.

都

DIAGRAM D. IE 511-00

ELECTRONIC FUEL INJECTION SYSTEM
D. IE Vehicles - $4 l l$ Types - produced up to March 1970

VEHICLES D. IE ALL TYPES

IMPORTANT :

Certains actions must be avoided at all costs as they would damage the components of the electronic fuel injection system, in particular the electronic control unit itself.

1) Never use a rapid charger, and never carry out arc or spot welding on the car chassis without first having disconnected both battery leads and isolated the " + " earth lead.
2) Never use a test lamp to check the continuity of a circuit.
3) Never strike a spark to check whether a lead is live.
4) Never start a vehicle with a voltage exceeding 12 volts.
5) Never force a connector onto the unit concerned. Take note of the inhibitor chamfers.
6) Only withdraw the connectors by tahing hold of the sides and never by pulling on the leads. Chech that the rubber caps completely cover the connectors when these are fully inserted.
7) The precautions to be taken during the alternator check also apply in this case.
8) Never alter the adjustment of the external potentiometer on the new control units.

If faults occuring on the vehicle seems to be attributable to the electronic fuel injection system, it is essential to :

- Check the ignition.
- Check the basic adjustments.
- Check the electronic fuel injection system.

Checking the electronic fuel injection system:

Preparations :

1) Check the charge of the battery (voltmeter shunted)
2) Carry out the full check in the correct order.
3) Refer to operations D. IE 511-00, D. IE 511-00 a, DX.IE 511-00 or DJ.IE 511-00 in order to identify the various leads.
4) Repair faults discovered before continuing check up.
5) Check the conductivity of the leads using an ohmmeter.

$$
(\infty=\text { circuit broken } \quad 0=\text { correct circuit })
$$

6) Check that the flat female terminals, in particular those of harness terminal block are pushed right over the lugs of the difference components. To ensure this, remove the rubber hoods of the connectors; the flat terminals of the latter must not be pushed out of the plastic housings.

IMPORTANT : Before checking the electronic fuel injection system, it is essential to make sure that the control unit and the pressure sensor are correctly matched (see table below)
REPAIRING : When changing

- an electronic control unit : refer to column "Replacement §l" of table below.
- a pressure sensor : refer to column "Replacement § 2"

	ORIGINAL EQUIPMENT		REPLACEMENT COMPONENTS (essential fitting)	
DATE	CONTROL UNIT	PRESSURE SENSOR	1) CONTROL UNIT ONLY	2) PRESSURE SENSOR ONLY
from September 1969 to July 1970	No marh N^{0} DX. 144.906 A (Ref. BOSCH $\mathrm{N}^{\circ} 0.280 .000 .011$)	$$	Fit a control unit : N° ZC. 9.851.101 U (Ref. BOSCH No 0.280.000.042) (or the standard control unit $\left.\mathrm{N}^{\circ} 5.417 .266 \mathrm{~B}\right)$ - Keep original pressure sensor	- Fit a standard pressure sensor : N° DX. 144.263 A - Keep original electronic control unit
$\begin{gathered} \text { from } \\ \text { July } 1970 \\ \text { to } \\ \text { December } 1970 \end{gathered}$	Mark: I yellow dot N^{0} DX. 144.906 A (Ref. BOSCH N° 0.280.000.011)	Mark: 1 black dot DX. 144.263 B (Ref. BOSCH $\mathrm{N}^{\circ} 0.280 .000 .023$)	- Fit a control unit : N^{0} ZC. 9.851.101 U (Ref. BOSCH No 0.280.000.042) (or the Standard control unit	- Fit a sensor: 1 black dot N° DX. 144.263 B
$\begin{gathered} \text { from } \\ \text { January } 1971 \\ \text { to } \\ \text { April } 1971 \end{gathered}$	Mark : 2 yellum dots $\mathrm{N}^{\mathrm{N}} 2 \mathrm{D} 5.402 .234 \mathrm{~K}$ (Ref. BOSCH $\mathrm{N}^{\circ} 0.280 .000 .011$)	Mark: 1 black dot N° DX. 144.263 B (Ref. BOSCH $\mathrm{N}^{\circ} 0.280 .100 .023$)	- Replace the original sensor by a Standard pressure sensor : N^{0} DX. 144.263 A	- Keep original electronic control unit
$\begin{gathered} \text { from } \\ \text { April } 1971 \\ \text { to } \\ \text { September } 1972 \end{gathered}$	"ith external potentiometer N° DX. 144.906 B (Ref. BOSCH $\mathrm{N}^{\circ} 0.280 .000 .022$) AIR TEMPER $N^{\circ} 1 D$	Standard N^{0} DX. 144.263 A (Ref. BOSCH $\mathrm{N}^{\mathrm{N}} 0.280 .100 .011$) URE SENSOR : 2.360 A	Fit a control unit : N^{0} DX. 144.906 B (Ref. BOSCCH No 0.280.000.022) (or the Standard control unit N° 5.417.265 R) - Keep original pressure sensor	Fit a Standard sensor: N° DX. 144.263 A - Keep original electronic control unit
Since September 1972	With external potentiometer N° 5.429.447 D (Ref. BOSCH $\mathrm{N}^{\mathrm{c}} 0.280 .000 .047$) AIR TEMPE $\mathrm{N}^{\circ} 1$	Mark: 1 blue dot N^{0} 5.429.448 P (Ref. BOSCH N° 0.280.100.048) TURE SENSOR : 412.360 A	- Fit a control unit : N^{N} 5.429.447 D (Ref. BOSCCH No 0.280.000.047) (or the Standard control unit N° 5.436.493 R) - Keep original pressure sensor (Mark: I blue dot)	Fit a sensor: 1 blue dot N^{N} DX. 144.263 A (Ref. BOSCH No 0.280.100.048) - Keep original electronic control unit.

IDENTIFICATION OF COMPONENTS: The control units and the sensors (pressure and temperature) always bear the supplier's reference number.
NOTE :

1. A pressure sensor N° DX. 144.119 A (l green dot) has been fitted as a repair on a few vehicles only. This sensor is not on sale but it can be replaced by pressure sensor $\mathrm{N}^{\circ} \mathrm{DX} .144 .263 \mathrm{~B}$ (1 black dot).
2. New components; the Replacement Parts Dept. supplies only three types of control units :
a) The control unit Na ZC. 9.851 .101 U (Bosch ref. $N^{\circ} 0.280 .000 .042$) replacing control units N° DX. $144.906 \AA$ (unmarked or with 1 yellow dot) and $\mathrm{N}^{\circ} 2$ D 5.402 .234 K (2 yellow dots).
IMPORTANT : With control unit N° ZC. 9.851 .101 U .

- a standard pressure sensor N° DX. 144.263 A must be fitted.
- never fit an air temperature sensor.
b) The control unit No DX. 144.906 B (Bosch ref. $N^{\circ} 02.800 .000 .22$) replacing an identical control unit.
c) The control unit No 5.129.177 D (Bosch Ref. $N^{\circ} 0.280 .000 .047$) replacing an identical control unit.

NOTE: These three control units are fitted with an externally controlled potentiometer : never alter its adjustment.

Connect the terminal block (1) of the BOSCH Test Unit EFAW 228 - S 10 and the terminal block (2) of the electronic control unit.

IMPORTANT NOTE : Do not connect up the electronic control unit otherwise the readings would be distorted.
To do this :
Remove the electronic control unit.
Disconnect the terminal block (2) of the cuntrol hit harness and check the poswunning of the leads of the 25 way connector using the reference marks and referring to the wiring diagrams.
Connect the terminal blocks (1) and (2).

TURN THE SWITCH TO THE "MEASURE" POSITION

Precautions:

- It is necessary to switch on the ignition to carry out the following checks.
- To avoid heating the ignition coil, disconnect it. (Disconnect the lead from the "-" or the "RUP" terminal on the coil).

Operations to be carried out
Additional checks to be carried out
if the value specified is not obtained

1. Check the feed voltoge of electronic control unit.

a) Switch 8 : in position "voltage 1" Switch on the ignition

VOLTMETER : should read 11 to 12.5 volts.
b) Switch B : in position "valtage II"

VOLTMETER : should read 11 to 12.5 volts
a) If the voltmeter indicates no voltage :

Check whether there is voltage at terminals $30 / 51,86$, 87 of general feed relay (3), using a separate voltmeter

- terminal $30 / 51$: if voltage $=0$

The black lead N 1 from the starter motor relay (8) to the terminal $30 / 51$ of the general feed relay (3) is O / C or disconnected.

- terminal 86
: if voltage $=0$
The ignition switch (A) is defective, or the excitation leads on relay (3) are O / C or disconnected.
Either : feed wire from the coil (15) to the vehicle harness,
or lead (violet 3) from coil (15) to terminal 86 of relay (3) (mauve 3), defective.
- terminal 87
: if voltage $=0$
the general feed relay is defective :
- Yellow lead 26 from terminal 85 or relay (3) to earth 26, on regulator, $0 / \mathrm{C}$ or disconnected.
- Relay (3) is defective.
- If there is voltage at terminals $30 / 51,86,87$ of relay (3) :
- The lead (white 2) from terminal 87 of relay (3) to terminal 16 (yellow brown 2) of electronic control unit (18) is O / C or disconnected.
- The lead (yellow-blue 26) from electronic control unit (18) terminal 11 to earth 26 on the requiator is $0 / \mathrm{C}$ or disconnected.
b) If the voltmeter indicates less than 11 volts :

Check whether there is any contact resistance in the leads:

- Black (1) from starter motor relay (8) to terminal 30/51 of general feed relay (3).
- White (2) from terminal 87 of relay (3) to yellow-brown 2, terminal 16 of electronic control unit (18).
- Yellow-blue (26) from electronic control unit terminal block (18) terminal 11 to earth 26 at regulator.
Using a separate voltmeter check wheter there is contact resistance across the points of the general feed relay (3) (voltage drop between terminals $30 / 51$ and 87).

Check lead (white 2) from terminal 87 of the general feed relay (3) to terminal 24 (brown 2) of the electronic control unit.

2. Check the starting voltage at terminal 87 of impulse relay (5).

- Switch B : in "Starting voltage" position
- Operate the starter so that the pointer just stabilises.
- VOLTMETER : should read 9 volts minimum
a) If the voltmeter shows no voltage, but the starter operates:
- Check whether there is any voltage at terminals $30 / 51$ and 85 of impulse relay (5).
-Terminal 30/51 : If no voltage :
The lead (black 1) from starter relay (8) to black 1, terminal $30 / 51$ of impulse relay (5) is O / C or disconnected.
- Terminal 85
: If no voltage :
The lead, black 1 , from starter relay (8) to yellow 1 , terminal 85 of impulse relay (5) is $0 / \mathrm{Co}$ or disconnected.
- Check the lead mauve 6 from terminal 86 of impulse relay (5) to connection of lead, red 6 , with vehicle wiring harness (lead from starter switch B).
- Check whether there is any voltage at terminal 87 of impulse relay (5) (5). If voltage is still 0 when starter motor is operated, replace the impulse relay (5).
- Check the lead, white 7, from impulse relay (5) terminal 87 to violet 7 of electronic control unit (18), terminal (18) ($0 / \mathrm{C}$ or disconnected).
b) If the voltmeter indicates no voliage and the starter does not operate:
- In addition to the test above, check :
- The starter motor switch B and the starter motor relay (8).
- The lead, red 6, from the harness of the injection system to starter motor switch B.
- The starter switch earth B through the charge warning light relay (terminal L on regulator).
The starter motor.
c) If the voltmeter indicates less than 9 volts:
- Check the voltage drop across the contacts of the starter motor relay (8) and in the connection of the starter motor feed cable on the solenoid. Use a separate voltmeter and measure the voltage at the " + " terminal of the battery and the voltage at the " + " terminal of the solenoid when the starter motor is operated.
- Check the voltage drop across the contacts of the impulse relay (5). Use a separate voltmeter and check the voltage at terminal 30/51 and the voltage at terminal 87 of the impulse relay (5) : The voltage at terminal 87 of the impulse relay (5) must be the same as that at terminal 18 of the electronic control unit (read on the tester volts scale); if it is not, the lead white 7 from terminal 87 of the impulse relay (5) to violet 7 of terminal 18 of the electronic control.
- Check the starter motor.

DJ.IE VEHICLES PRODUCED SINCE 26th. APRIL 1971

The starter motor and impulsion relays are not fitted on these vehicles (refer to the diagrams on the following page and to operation DJ.IE 511-00 to identify the markings of the leads).

For these vehicles, the check on the starter motor voltage becomes as follows:
(refer to diagram DJ.IE 511-00 and to the lead identification table).
Operations to be carried out
Further checks to be carried out if the specified value is not obtained

2. Check the starter motor voltage

(DJ.IE $\longrightarrow 4 / 1971$)

- Switch B in position "starter motor voltage"
- Operate the starter motor long enough to allow the needle to become steady
- VCLTMETER : should read 9 volts minimum
a) The starter motor works and the voltmeter shows no voltage:
- Check the shunt on the leads (mauve 18) and (white 18)
- The lead (white 18,18) from the shunt to the terminal 18 on the electronic control unit (18) (interrupted)
b) The voltmeter shows no voltage and the starter motor does not work: In addition to the preceding checks, test :
- The feed wire of the starter motor switch B (jump lead on the lighting feed wire).
- The starter motor switch B
- The connecting lead (red 18) from the electronic fuel injection system harness to the starter motor switch B.
The starter motor.
c) The voltmeter shows a voltage of less than 9 volts:
- Check the voltage drop in the connection of the starter motor feed cable. Use the voltmeter to measure the voltage at the ${ }^{n+}+$ terminal of the battery and at the " + " terminal of the solenoid when the starter motor is operated.
- Check the voltage drop in the connections.
- Of the feed wire of the starter motor switch B. (jump lead on the lighting switch feed wire).
- Of the contacts of the starter motor switch B.
- Of the connecting lead (red 18) from the electronic fuel injection system harness to the starter motor switch B.
- From the shunt lead (white 18.18) to the terminal (18) of the electronic control unit (18)
DX.IE Vehicles

DJ.IE Vehicles produced up to April 1971

DJ.IE Vehicles produced since April 1971
The starter motor and impulsion relays are no longer fitted.

KEY:
NOTE: The marks on the parts are identical to those used in the wiring diagrams.
2. Battery
3. General feed relay
4. Fuel pump relay
5. Impulsion relay
7. Thermal time switch (cold start)
8. Starter motor control relay
9. Cold start injector
15. Ignition coil
18. Electronic control unit
19. Fuel pump
A. Vehicle ignition contact
B. Starter motor switch
C. Charging warning light
D. Relay voltage regulator relay
E. Starter motor

Operations to be carried out

3. Check the resistance between the windings of the pressure sensor (17) and earth :

Switch B: in position "Adjust \propto "

Pressure sensor.

- Adjust the tester (ohmmeter) to position ∞ by turning the "Adjust ancontrol.
- Press button marked "Earth"

OHMMETER : pointer on ohms scale should read \times
a) If ohmmeter indicates zero resistance (short circuli

Withdraw the connector from the pressure sensor (17)
Two possibilities now exist :

- If the ohmmeter now indicates 《D>> resistance:

The pressure sensor is defective; replace it.

- If the ohmmeter now indicates zero resistance:

One or several of the following leads are short-circuited.

- Green-grey 8 from terminal 7 of the electronic control unit (18) to Grey 8 of the pressure sensor (17)
- Green-brown 9 from terminal 8 of the electronic control unit (18) to brown 9 of the pressure sensor (17)
- Yellow-violet 10 from terminal 10 of the electronic control unit (18) to violet 10 of the pressure sensor (17)
- Yellow-green 11 from terminal 15 of the electronic control unit (18) to yellow 11 of the pressure sensor (17)

If so, replace the injection system wiring harness.
b) II the ohmmeter indicates a resistance less than ∞, but not zero (fault) insulation)
Carry out the same check as at a).
4. Check the resistance of the primary winding of pressure sensor (17):

Switch B : in position "Adjust ∞ pressure sensor"
Press "Primary" button.

OHMMETER : should read 0.8 to 1.2 on the lower scale (actual value 90 Ohms approx.).
a) Check that the connector on the pressure sensor is correctly fitted.
b) If the ohmmeter indicates a resistance considerably less than the speci fied value:

Withdraw the connector from the pressure sensor :

- If the ohmmeter indicates ∞, the pressure sensor is defective; replace it.
- If the ohmmeter still indicates a resistance considerably less than the specified value, replace the injection system wiring harness.
c) If the ohmmeter indicates zero resistance:

Withdraw the connector from the pressure sensor :

- If the ohmmeter now indicates ∞, the pressure sensor is defective; replace it.
- If the ohmmeter indicates 0 , replace the injection system wiring harness.
d) If the ohmmeter indicates a resistance considerably higher than the specified ialue:
Check the following leads and their connections for excessive resistance:
Green-grey 8 to grey 8, yellow-green 11 to yellow 11, from terminals 7 and 15 on the electronic control unit (18) to the pressure sensor (17)
e) If the ohmmeter indicates ∞ resistance:

Withdraw the connector from the pressure sensor and connect a jumper
lead across the outer terminals (yellow and grey) of the connector:

- If the ohmmeter now indicates 0 , the pressure sensor is defective, replace it. - If the ohmmeter indicates - check the leads green-grey 8 to grey 8 , yel-low-green 11 to yellow 11, and their connections.

Operatinns to be carried out	Additional checks to be carried out if the specitied value is not obtained

5. Check resistance of secondary winding of pressure sensor (17):

Switch 3 : in position "Adjust \times pressure sensor "

Press "Secondary" button
OHMMETER: should read 3 to 4 on the $R x$ scale (350 ohms approx.)

- Checks identical to 4 a), b), c).
d) If the ohmmeter indicates a resistance considerably higher than the specified value:
Check the following leads and their connections for excessive resistance: Green-brown 9 to brown 9, and yellow-violet 10 to violet 10 , from termindl 8 and 10 of the electronic control unit (18) to the pressure sensor (17)
e) If the ohmmeter indicates ∞

Withdraw the connector from the pressure sensor and connect a jumper 1 lead between the inner terminals (violet and brown).

Violet Brown

- If the ohmmeter now indicates 0 , the pressure sensor (17) is defective. Replace it.
- If the ohmmeter now indicates ∞, check the leads green-brown 9 to brown 9 and yel. low-violet 10 to violet 10 , and their connec. tions.

6. Check resistance of triggering contacts in distributor (1).
1) Switch B : in position "Distrib. contactlo
Operate starter motor to turn distributor
OHMMETER : the pointer should oscillate.
2) Switch B : in position "Distrib. Contact II"
Carry out same check as above (§6-1)

If the ohmmeter pointer does not oscillate, or if it remains at either \times or 0 .

- Check that the connector on the distributor is correctly fitted.
- Replace the triqgering contact cassette.

7. Check the correct operation of the throttle-spindle switch (10) (pulse-width)

1) Switch B . in position "Throttle value switch I"
Depress the accelerator pedal slowly to the end of its travel. (On vehicles with hyd gearchange place manual clutch control in "engaged" position)

OHMMETER : nust show S to 10 oscillations between 0 and \propto
2) Switch B : in position "Throttle value switch II"
Carry out same.check as above (§7-1)

- Check that the connector on the throttle-spindle switch (10) is correctly fitted; if still incorrect :
- Fit a new throttle-spindle switch (10) and adjust it (see §8-1 a, belowl

Operations to be carried out
Additional checks to be carried out if the specified value is not obtained
8. Check resistance of the contacts of the throttle-spindle switch (10):

Switch B : in position "Throttle valve switch III.
a) If the ohmmeter indicates ∞ : the throttle-spindle switch (10) is incorrectly adjusted. Adjust the switch.

5872

- OHMMETER : must read 0

With the throttle closed (accelerator pedal released) the contacts of the throttle-spindle switch (10) must be closed. They must open for a movement of 2° of the throttle.

To facilitate this adjustment the switch mountings are graduated (1 division $=2^{\circ}$)

Slightly slacken the two retaining screws (1) for the throttle-spindle switch (10).

With the ohmmeter needle indicating and the throttle in idling position, place a feeler gauge of 0.7 mm between the eccentric adjuster of the throttle stop and the lever on the throttle-spindle.
2. With accelerator pedal very slightly depressed (butterfly opening $=2^{\circ}$)

- OHMMETER : must read ~
- Then gently turn the switch (10) until the exact moment when the contacts close (the pointer then indicates 0). Tighten the two switch retaining screws.
- Check the adjustment : With the accelerator pedal released, place a feeler gauge of 0.7 mm as above : the pointer must indicate 0 . Insert a feeler gauge of 1.4 mm : the pointer must indicate ∞.
b) If the ohmmeter still indicates ∞ :

Check that the connector on the throttle-spindle switch (10) is properly fitted.

- If it is correct, withdraw the connector from the throttle-spindle switch (10) and connect a jumper lead between terminals grey and white of the connector.
c) If the ohmmeter still indicates ∞ :

Check : - The lead white 16 between the switch (10) and the electronic control unit (18) terminal 17 (white 16).

- The lead grey 15 between switch (10) and the electronic control unit (18) terminal 14 (yellow-grey 15)
d) Refit the connector on the switch and adjust the switch (10) as in § a above.
e) If the ohmmeter still indicates \sim :

Replace the throttle-spindle switch (10).
a) If the test chimmeter indicates 0 : The throttle-spindle switch (10) is incorrectly adjusted. Re-set it (see § $8-1$ a)
b) If the ohmmeter still indicates i). Withdraw the connector from the throt tle-spindle switch (10).
c)If the ohmmeter still indicates 0 : Replace the injection system wiring harness.
d) Refit the connector and proceed as in § a above.
e) If the ohmmeter still indicates 0 : Replace the throttle-spindle switch (10)

OPERATION N ${ }^{\circ}$ D. IE 144-0 a : Checking the electronic fuel injection system (BOSCH EFAFI 228-S 10 Test Unit)

Operations to be carried out	Additional checks to be carried out if the specified value is not obtained

9. Check the resistance of the thermal sensor (6):

Switch B in position "Temperature Sensor II."

- OHMMETER : must read 0.3 to 2.5 on Rx scale (2500 Ohms approx. at $20^{\circ} \mathrm{C}$)

NOTE : The specified value of 2500 Ohms corresponds to $20^{\circ} \mathrm{C}$. At a higher temperature resistance is lower.
a) If the ohmmeter indicates ∞ :

Check that the connector is properly fitted to the thermal sensor.
If it is correct, withdraw the connector from the thermal sensor (6) and connect lead green 18 to earth.

- If the ohmmeter indicates 0 , check the lead 26 between the thermal sen sor (6) and earth on the requlator.
- If it is correct, replace the thermal sensor (6).
- If the ohmmeter indicates ∞, check the lead, green 18 to green 18, between terminal 23 on the electronic control unit (18) and the thermal sensor (6),
b) If the ahmmeter indicates 0 :

Withdraw the connector from the thermal sensor (6).

- If the ohmmeter indicates 0 , check the lead, green 18 to green 18 , between terminal 23 of the electronic control unit and the thermal sensor (6)
- If the ohmmeter indicates ∞, replace the thermal sensor (6).

10. Check the injectors (11), (12), (13), and (14):

- Switch B : in position "Injectors"
- Adjust pointer to ∞ on scale, using "Adjust ∞ " knob.
- Press valve buttons 1,2,3 and 4 in sequence corresponding to Injectors n° 1, 2,3 and 4
- OHMMETER : must read 2 to 3 on Rx scale (2.4 Ohms at $20^{\circ} \mathrm{C}$).
a) If the tester ohmmeter indicates 0 , or a value considerably lower than 2 : Withdraw the connector from the corresponding injector. If the ohmmeter now indicates ∞, replace the injector.
- If the ohmmeter still indicates 0 or a value considerably lower than 2 , replace the injection system harness.
b) If the tester ohmmeter indicates ∞, or a value considerahly higher than 3 Check that the connector is praperly fitted on the injector. If it is correctly fitted, withdraw the connector from the corresponding injector and connect a jumper lead across the terminals. The ohmmeter should indicate 0 .

- If the ohmmeter indicates ∞, or a value considerably higher than 3 : Check the feed wire and the earth lead of the injector in question and the general earth lead.

E.g. lst injector.

- Lead between electronic control unit (18) terminal 3 (green-white 22) and injector (11) of the lst cylinder (white 22).
- Earth lead 26 of the corresponding injector and generai earth lead (26) at the regulator :
Refit the connector on the injector. If the ohmmeter indicates ∞ or a value considerably higher than 3, replace the corresponding injector.
D.IE VEHICLES (All types) produced since 5 th April 1971

The electronic injection control of these vehicles has been modified as follows :

- the addition of an air temperature sensor
- modification of the control unit (see pages 3 and 4)
- modification of the electrical harness of the injection system.
(see operations DX.IE 511-0 and DJ.IE 511-00)

The operations involved in checking the electronic fuel injection system of these vehicles differ only to the extent that an additional check on the air temperature sensor is necessary.

For these vehicles, after checking the resistance of the thermal sensor (§ 9 page 7) the air temperature sensor must be checked.
(Refer to diagrams DX.IE 511-00 and DJ.IE 511-00 and to the lead identification table)

7a Check the resistance of the air temperature sensor (D.IE All types 4/1971)
a) Ohmmeter shows ∞ :

Check that the connector is properly fitted to the air temperature sensor.
If it is correct remove the connector from the air temperature sensor (2)
and connect the lead 1 to earth :

- If the ohmmeter shows 0 : check the lead 11 between the air temperature sensor (21) and the earth on the regulator. If it is correct, replace the air temperature sensor (21).
- If the ohmmeter shows ∞ : check the lead 1,1 , between terminal (1) of the electronic control unit (18) and the air temperature sensor (21).
b) Ohmmeter shows O :

Remove the connector from the air temperature sensor (21)

- If the ohmmeter shows 0 : check the lead 1,1 between the terminal (1) of the electronic control unit and the air temperature sensor (21)
- If the ohmmeter shows ∞ : replace the air temperature sensor (21).

- Switch 8 in position

 Thermal sensor 1- Ohmmeter, should read 2 to 5 on the lower scate (real value around 300Ω at $10^{\circ} \mathrm{C}$).
NOTE : The specified value of 300Ω corresponds to $20^{\circ} \mathrm{C}$.
At a higher temperature resistance is lower

Operations to be carried out
Additional checks to be carried out if the specified value is not obt ained

11. Check the fuel-feed pressure :

5881

First remove the cold start injector (9) from the induction air manifold, and disconnect the fuel pipe (1) from the injector (9).

- Connect the pressure gauge A onto the cold start injector (9) as shown in the photograph above.
- Use the 3-way union G, flexible pipes B and D and quick-acting clipsn E.
NOTE : A, B, C, D, E are supplied with the BOSCH Tester EFAW 228 S 10
- Switch A : in position "Valve check (position of switch B unimportant)

1. Press the button marked "Pump"

PRESSURE GAUGE : should read $2 \mathrm{~kg} / \mathrm{cm}^{2}(28.5 \mathrm{psi})$
(a) If the -uuke reaister i (the fuel pump is not working). Check that the 2-pole connector on the fuel pump is properly fitted. If so, withdraw the 2-pole connector from the pump and measure the voltage across the terminals using a separale voltmeter

- If the coltmeter indicates 12 volls: The fuel pump is defective; replace it.
If the volimeter indicates 0 volts : Listen to determine whether the fuel pump relay (4) is operating when the "Pump" button is pressed on the tester.
If the fuet pump relay (i) is operating
Check the voltage at terminal 87 of relay (4) when the "Pump" button of the tester is pressed.
. If voltage $=0$ check that there is current at terminal $30 / 51$. If there is, replace fuel pump relay (4).
- If voltaqe $=12$ volts : check leads and connections for continuity :

Lead white 5 from fuel pump relay (4), terminal 87 , to fuel pump connector (19).

- Lead 27 from fuel pump connector (19) to earth (on the chassis sidemember).
If leads white 5 and 27, and their connections are not faulty, the fuel pump relay (4) is defective. Replace it.
- If the fuel pump relay (I) daes not operate: check the leads and connections for continuity :
. Lead white 2 from the general feed relay (3) terminal 87 to mave 2 of the fuel pump relay (4) terminal 86.
- Lead yollow 4 from fuel pump relay (4) terminal 85 to yellow 4 of the electroni control unit (18) terminal 19.

If the leads white 4 and yellow 4 and their connections are not faulty, the fuel pump relay (4) is defective.

Replace it.

2. Press the "Pump" button briefly

 GAUGE : should register a rapid pressure drop to $1.2 \mathrm{~kg} / \mathrm{cm} 2(18.5$ psi). Wait approximately 30 seconds: the pressure should not drop visibly any more.

Slacken the lock-nut (3) and turn the adjusting screw (2) until the gauge registers a pressure of $2 \mathrm{~kg} / \mathrm{cm} 2(28.5 \mathrm{psi})$. If this pressure cannot be obtained by adjusting, the pressure regulator (1) is defective ; replace it.

IMPORTANT

The setting of the pressure regulator has a great influence on fuel consumption and on the composition of the exhaust gases.
a) If the pressure falls rapidly below $1.2 \mathrm{~kg} / \mathrm{cm} 2$ (17 psi) when the s Pump, button is released.

Isolate the fuel pump. To do this :
Place clamp 3903-T in the middle of the rubber part of fuel feed line (4) before the injector for $\mathrm{N}^{\circ} 1$ cylinder.

Press the "Pump" button to pressurise the circuit and quickly close the fuel feed line (4) by means of clamp 3903-T when the pump operates.
b)lf the pressure does not drop:

Check the union of the fuel outlet pipe on the pump for leaks.
c) If the pressure drop to 0 :

- Check the fuel-tightness of the cold-starting injector. Look to determine whether fuel is escaping. If it is, replace the injector.
- Check the fuel-tightness of the unions of the fuel feed pipes, on the injectors and on the pressure regulator.
- Check the fuel tightness of each injector, eliminating them one by one.

To do this:

- Disconnect the fuel feed manifold from the rubber attached to the injector to be checked and plug the end (use a flexible pipe, inside diameter $=7 \mathrm{~mm}$, lenght $=50 \mathrm{~mm}$, plugged at one end. Ensure fuel-tightness at the plug and on the fuel-feed manifold by "quick-acting" clips *).

Re-pressurise the circuit as shown above.
If the pressure does not drop: the injector being checked is leaking and must be replaced.
If the pressure drop to 0 : check the remaining injectors.
If the pressure drops to 0 after all the, injectors have been checked and eliminated: the pressure regulator is leaking and must be replaced.
Remove clamp 3903-T.

Operations to be carried out	Additional checks to be carried out if the specified value is not obtained

12. Check the action of the injectors:

Switch A: in position "Injector check"

Pressurise the circuit by briefly pressing the "Pump" button.

Press very briefly on each of the valve buttons 1, 2, 3 and 4 in turn.
While each button is depressed, the needle of the pressure gauge should drop. It must stop as soon as the button is released.
13. Check the action of the cold-start injector (9) and of the time delay thermal switch (7):

Switch A : in position "Injector check"

With the fuel circuit pressurised, briefly activate the starter motor, after having placed a container under the cold-stort injector (9)
The cold-start injector should spray fuel.

- If the pressure does nol drop: replace the corresponding injector.
a) If the engine coolant temperature is higher tha: $37^{\circ} \mathrm{C}$: The cold-start injector will not operate.
If this is the case, disconnect the lead Grey 17 from the thermal switch (7) for cold-starting and earth it. The cold-start injector should operate in these conditions all the time that the starter motor is activated. If it does not :
Check: - The lead between the impulse relay (5) terminal 87 (white 7) and the electronic control unit (18) terminal 18 (violet 7).
- The lead between the impulse relay (5) terminal 87 (white 7) and the cold-start injector (blue 7).
- The lead between the impulse relay (5) terminal 87 (white 7) and the terminal switch (7) (blue 7).
- The lead between the cold-start injector (9) (grey 17) and the thermal switch (7) (grey 17)

Check the resistance of the winding of cold-start injector (9):
It should be 4.2 ohms at $20^{\circ} \mathrm{C}$. If not, replace the cold-start injector (9).
b) If the engine coolant temperature is less than $16^{\circ} \mathrm{C}$: The cold-start injector will operate

If it does not operate, carry out the above check.
With the thermal switch (7) connected. if the cold-start injector (9) still does not operate, the thermal switch (7) is defective. Replace it.
14. Remove the pressure gauge, the fle xible pipes and the "quick-acting" clips.

First connect the cold-start injector feed pipe to the injector and then refit the cold-start injector onto the air inlet manifold.

II. SECOND PART

With the terminal block (1) of BOSCH tester EFAW 228 S-10 still connected to the terminal block (2) of the injection system harness, CONNECT THE ELECTRONIC CONTROL UNIT (3) to the other side of the terminal block (1) of the 3OSCH tester.

15. Check the movement of the triggering contacts in the distributor :

- Switch A : in position "Distrib. Contact 1 .
- Run the engine at 1500 rpm approx. and turn switch A from position "Distrib. Contact 1 " to "Distrib. Contact IIn alternately.
- VOLTMETER - The needle should move towards the max. end of the scale then oscillate about an average reading. The variation between the two average readings must not be more than two divisions (Read on the upper scale-voltmeter) between positions "Distrib. Contact I" and "Contact IIn.
If the variation exceeds two divisions (upper scale-voltmeter):
The triggering contacts are defective. Replace the contact cassette.

16. Check the operation of the throttle-spindle switch:

- Switch A : in position "Distrib. Contact I" or "Distrib. Contact II".
- With the engine idling, disconnect from the air inlet manifold, the rubber pipe leading to the supplementary air control : the engine speed should oscillate between 1100 and 1800 rpm .
- Slightly open the throttle : the engine speed should stabilise. If it does not, adjust the throttle-spindle switch (see § 8-1 a).

17. Check the full-load switch (16):

- Switch A: in position "Pressure switch"

Check that the connector on the full-load switch is properly fitted.

1) With the engine stopped and ignition on, the voltmeter needle should indicate a value lower than 6 (upper scale-voltmeter)
2) Start the engine

With the engine idling, the needle should indicate a value above 17 (upper scale-voltmeter) ; otherwise : If the needle indicates 0 :
Withdraw the connector from the full-load switch (16) and connect a jumper lead between the terminals :
If the needle indicates a value above 17 ,

Check: - The lead between the electronic control unit (18) terminal 2 (red to blue 12) and the full-load switch (16) (blue 12),

- The lead 26 from the full-load switch (16) to earth (26) on the electric regulator.
- The earih (26) on the regulator.

If these leads and the earth (26) are correct, the full-load switch) 16) is defective and must be replaced.
3) Snap open the throttle : the needle must mo'e smartly between the two values indicated previously. If the needle only drops slowly :

- Disconnect from the air inlet manifold the flexible pipe leading to the switch (16) :

The engine idling should become "jumpy" (mixture too rich).
If it does not, replace the full-load switch.
18. Switch off the ignition

Remove the BOSCH TESTER EFAW 228 S-10.
Refit the electronic control unit.

III. PART THREE

IMPORTANT NOTE :

The BOSCH TESTER EFAW 228 S-10 enables every part of the electronic fuel injection system to be checked except for the electronic control unit itself.

If no fault is found during the tests, the electronic control unit should not yet be pronounced faulty :

1) First check the five earth leads carefully:

- From the voltage regulator (a)
- From the injection system harness (b)
- From the battery (c)

See illustrations on page 17.

- From the electrical fuel pump (d)
- From the car chassis (e)

Check the tightness of the bolts and pull gently on the leads to ensure that they are properly secured to their terminals.
2) Due to the difficulty of checking the contacts of the wiring harness terminals on the various components of the electronic injection system, a new wiring harness must be tried.
3) Carry out a road test. If the trouble persists disconnect the excitation lead (yellow sleeve) from the alternator, insulate it, and repeot the road-test :

If the trouble disappears: either the alternator or the requlator is defective. Check them and replace whichever is foulty.

If the trouble persists : the electronic control unit is defective and must be replaced.

Manual 814-1
5875

5637

DIAGRAM D.IE - 511.00 a
ELECTRONIC FUEL INJECTION SYSTEM
n.IF Vehicles - 1ll Types - produced between Varch 1970 and April 1971
(See Operation D.IE - 511.00 a)

D. IE YEHICLES (All Types) produced between Varch 1970 and April 1971

Wiring diagram D. IE 511-00 a differs from the wiring diagram D. IE 511-00 only in the following points :

1) Wiring harness in two parts : a 12-way terminal block with pins (20) links these two parts:
2) Marking of the various leads is partly modified : self-adhesive numbers replace the colour identification marks.

The check for the electronic fuel injection system described in this section corresponds to wiring diagram D. IE 511-00. To apply this section to the new wiring diagram D. IE 511-00 a it must be remembered that the wires correspond as follows :

DIAGRAM : D. IE 511.00	DIAGRAM : D. IE-511-00 a
J I, N 1.	J 25 , N 25
$\mathrm{J}-\mathrm{Mr} 2, \mathrm{Mr} 2, \mathrm{Bc} 2, \mathrm{Mv} 2$	16, 24, Bc 24, Mv 16
Mv 3, Vi 3	Mv 26
J 4	J 19, 19
Bc 5	Be 27, Be 27
Mv 6, R 6	Mv 28, R 28
Vi 7, Bc 7, Bl 7	18, Bc 18 (13), Bl 13
$\mathrm{Ve}-\mathrm{Gr} 8$, Gr.	7, 7
Ve-Mr 9, Mr 9	8,8
J - Vi 10, Vi 10.	10, 10
J-Ve 11, J 11	15, 15
R-Bl 12, Bl 12	2, 2
J - Bc 13, J 13	9,9
Bl 14, Bl 14.	20, 20
J-Gr 15, Gr 15	14, 14
Be 16, Bc 16	17, 17
Gr 17, Gr 17	T, (1), Gr 1
Ve 18, Ve 18	23, (23), 23
J-R 19, J 19	12, (12), 12
R 20, R 20.	21, (21), 21
Gr 21, Gi 21	22, (22), 22
Ve-Bc 22, Bc 22	3, (3), 3
Ve-Bl 23, Bl 23	5, (5), 5
Ve-vi $24, \mathrm{Vi} 24$.	4, (4), 4
Ve-R 25, R 25	6, (6), 6
J-Bl 26, J 26, 26	11, J11, (11), 11
27.	29

NOTE: The figures in brackets show the markings of the leads of the terminal block (20).

DIAGRAM DX.IE - 511.00

ELECTRONIC FUEL INJECTION SYSTEM

"DECEL" circuit

11. II. I chiches released since september 1972.

To comply with anii-pollution standards, a supple mentary intake of air is accomplished when releasing the accelerator (butterfly air intake valve closed). During a period of the de-acceleration stage, there is no injection cut-out like on the preceded models. Supplementary air intake is carried out by the PILOT valve, having a favourable sweeping effect to burn the exhaust gases. Consequently, during the de-acceleration period, the injection is held, and the fuel injected is proportioned according to the quantity of air intake accepted by the "DECEL system" (PILOT valve) to allow a perfect combustable mixture.

NOTE: O_{n} II.IE rehicles, the anti-pollution circuit is set up by the idling system being accelerated. On models released since Septemier 1972 as on DJ.IE models there is no more injection cut-out. The supplementary dir intake system is cut-off when releasing the accelerator and pressing on the foot brake.

17 Checking the anti-pollution circuit "DECEL"

Disconnect the tube " a " from the pilot valve (2). Bring the engine speed to about $2500-3000 \mathrm{rpm}$, and release the accelerator.

Using the index finger, check to see if the depression (suction) can be felt. If not, check the pipes " b " and " c " and there connection. If these are in good condition, the PILOT valve must be faulty, replace it.

DIAGRAM DJ.IE - 511-00
 ELECTRONIC FUEL INJECTION SYSTEM
 DJ.IE Vehicles produced since April 1971

(See Operation DJ.IE - 511-00)

D.IE VEHICLES (All Types) produced since April 1971

The wiring diagrams DX.IE 511-00 and DJ.IE 511-00 for these vehicles differ from the wiring diagram D.IE 511-00 only in the following points :

1) The harness is in two parts. A 12 -way terminal block (20) connects the two parts.
2) The addition of an air temperature sensor (21) (modified control unit).
3) The starter motor and impulsion relays are no longer fitted on the DJ.IE models.
4) The markings of the various leads have been partly modified. Self-adhesive numbers replace the colour markings.

The check fot the electronic fuel injection system griven in this section corresponds to the wiring diagram D.IE 511-00. To apply this section to the new wiring diagrams DX.IE 511-00 and DJ.IE 511-00, it must be remembered that the wires correspond as follows.

NOTE: The figures in brackets show the markings of the leads of the terminal block (20).

PROTECTION OF THE ELECTRICAL UNITS

PRECAUTIONS TO BE TAKEN WHILE WORKING ON A VEHICLE

Certain actions must be avoided at all costs as they would damage some of the electrical components or cause the electrical system to be short-circuited. (Fire rish)

1. Battery :
a) Disconnect the lead terminals, negative first
b) Ensure that battery is correctly connected. Neqative terminal must be earthed.
c) Connect both leads carefully. Earth lead last. Before clamping the negative on the battery terminal, bring them intermittently together to ensure that current does not pass. No spark must occur. If it does, a short-circuit in the electrical system is to be eliminated.
d) Before actuating the starter, ensure that both clamp terminals are correctly secured on the battery.
2. Alternator-Regulator:
a) Do not allow the alternator to turn without being connected to the battery.
b) Before connecting the alternator, ensure that battery is correctly fitted (negative earthed)
c) Do not check the operation of the alternator by short-circuiting the negative or "EXC "terminals to earth.
d) Do not reverse the leads connected to the alternator.
e) Never try to prime the alternator. This would damage the component as well as the requiator
f) Do not connect a suppressor either to the alternator or regulator "EXC" terminals,
g) Do not connect battery to a charger and never carry out arc or spot welding on the car chassis without having first disconnected both positive and negative battery leads.
3. Electronic fuel
injection system

Certain actions must be aroided at all rossts as they would damaze the compronents

a) Never use a rapid charger and never carry out arc or spot welding on the car chassis without having first disconnected both battery leads and isolated the + earth lead.
b) Never use a test lamp to check the continuity of a circuit.
c) Never strike a spark to check the continuity of a lead
d) Never start a vehicle with a voltage exceeding 12 volts.
e) Never force a connector onto the unit concerned

Take note of the inhibitor chamfers
f) Only withdraw the connectors by taking hold of the sides and never by pulling on the leads. Check that the rubber caps completely cover the connectors when they are fully inserted
g) The precautions to be taken during the alternator check also apply in this case
h) Never alter the adjustment the exterior potentiometer of the electronic control units fitted since April 1971.
4. Ignition coil :
a) Connect the supply lead of the coil to the ballast resistor terminal and not to the coil itself.
b) Connect the suppressor with a jump lead to the ballast resistor terminal and not to the coil itself. Only fit the suppressor recommended by the factory.
5. Quartz-iodine Bulb:
a) Switch off the headlamps to replace a bulb. If the headlamps have just been used, it is advisable to allow the bulbs to cool a few minutes before handling the faulty one.
b) Do not touch the Q.I. bulb with the fingers. Should you accidentally touch a bulb, it should be wiped with soapy water and dried with a lint-free cloth

CARS WITH SYNTHETIC HYDRAULIC FLUID.

L.H.S. 2

The D vehicles produced up to September 1966 use a red fluid of synthetic base in ther hydraulic circuits (fluid L.H.S.コ.)

The main reservoir, steering unit, HP pump (7 pistons), suspension spheres ond accumulators are painted black.
The general instructions given earlier apply to these cars, provided that the following instructions are scrupulously observed :

Cleaning :

Use a! whol only.

Assemhly:

Follow the detailed operations in the Manual.
If seals or components need lubricating before assembly use only synthetic fluid L.H.S.2.
If a component in contact with the suspension fluid, must be greased (e.g. steering pinion needles) use only a castor grease, such as $M T \| R R C$.

Rubber parts :

Use only those seals, tubes and diaphragms mode for use with sumhetir fluid l../I.s.2. Never fit parts of the same dimensions but intended for use with other fluids.

All seals with white markings must of necessity be renewed after dismantling. We have sent you a "Table of Seals" giving you the part numbers of the only items suitable for use with the synthetic fluid.

Units :

Use only units intended for use in systems containing /../I..i.2. fluid. Certain units are painted black, but in no case must units with gremqumhmgs be used.

Testing :

Use test - bench $2290-\mathrm{T}$
This test-benchspmimied yrey and the accessories bear no marking.
These accessonies, as well as the gauges, must only be used on vehicles functioning with synthetic fluid L.H.S.2.
Never use them with any other fluid or free testing units intended to function with any other fluid.

Hydroulte fluid :

Use only factory approved fluids bearing the symbol l..ll.a.2.
BIACK RESERVOIR : use SYNTHETIC FLUID L.H.S. 2.

CARS WITH MINERAL HYDRAULIC FLUID.

L.H.M

D vehicles produced since September 1966, with the exception of certain models for export markets, use a green fluid of mineral base in their hydraulic circuits (fluid L.H.I.).

The main reservoir and the hydraulic units are printed green or bear green identification marks.
The general instructions given earlier apply to these vehicles provided that the following instructions are scrupulously observed.

Cleaning :

Use petrol or white spirit only.

Assembly:

Follow the detailed operations in the Manual.
If seals or units need lubricating before assembly, use only mineral fluid l.II.II.
If a component in contact with the suspension fluid must be greased, use only a mineral grease "umiversul juint grease" or bearing grease (see table of oils and greases).

Rubber parts :

Use only those seals, tubes and diaphragms made for use with mineral fluid L.H.II.
Never fit parts of the same dimensions but intended for use with other fluids.
All seals bearing white markings must of necessity be renewed after dismantling.
We have sent you a "Table of Seals" giving you the part numbers of the only items suitable for use with mineral fluid.

Units:

Use only units with the green identification colour and intended for use in systems containing mineral fluill /../I. $\|$.

Testing :

Use test-bench 3654-T and its accessories 3655-T.
This test-bench is painted grectl and the accessories bear green markings.
These accessories and the gauges must only be used on vehicles functioning with mineral fluid l..II. II.
Never use them with any other fluid or for testing units intended to function with any other fluid.
NOTE: The "Le Bozec "pump used on test-benches for injectors in Diesel engines can be used, after cleaning, for testing units limiclionin" " "l/ mineral /luill../I.V. The tests must be carried out, of course, with mineral Muidl..|l. I/.

Hydraulic fluid:

Use only factory approced flaids bearink the symbol L..II.I/.

WORK ON THE HYDRAULIC SYSTEMS

To ensure correct functioning of the hydraulic systems it is essential that the hydraulic fluid and all the component parts shall be perfectly clean. The most stringent precautions must be taken when working on the car and for the storage of fluids and parts.

1. STORAGE.

All pipes, units and spare parts must be protected from dust and possible knocks.
Seals and rubber pipes must not be exposed to dust, air, light, or heat, hydraulic fluid must be kept in its original containers, securely sealed. We recommend the use of one litre ($1 \frac{3}{4}$ Imp. pt) containers for topping up or five litres. (8.8 Imp. pts. approx.) when draining and refilling in order to avoid keeping several open containers.

2. PRECAUTIONS DURING THE WORK.

Before starting work, wash the car carefully or at least the area in which work is to be carried out.
Example:

- When replacing a rear suspension cylinder, carefully wash the corresponding wheel arch.

Before disconnecting a union, wash it and the surrounding area carefully with an appropriate solvent

Release the pressure.
Then proceed as follows:
a) Work on all units except brakes and brake control :

1) Unscrew the bleed screw on the pressure regulator.
2) Place the manual height control lever in the "low" position.
b) Work on the brake circuits :
3) Unscrew the bleed screw on the pressure regulator.
4) Place the manual height control in the "low" position
5) Connect a tlexible pipe (plastic or rubber) to a front brake unit bleed screw or on the rear bleed screw of the centrifugal regulator or on the bleed screw of the hydraulic fast idling device. Slacken the bleed screw and depress the brake pedal to release the pressure in the brake accumulator.
c) Unions:

If the union is situated below the level of fluid in the reservoir, drain the latter to avoid loss of fluid or close the pipe immediately with an appropriate plug or cap.
The unions or union flange sealing plates must be fitted "freely" and without strain.

3. PRECAUTIONS AFTER DISCONNECTING THE UNIONS.

Close the open ends of all pipes
For the metal pipes use screwed unions.
For pipe assemblies protect the union flanges with self-adhesive masking-tape.
Protect plastic pipes in the same way.
For rubber pipes use cylindrical plugs :
diameter $=8 \mathrm{~mm} \quad$ length $=50 \mathrm{~mm}$
diameter $=12 \mathrm{~mm} \quad$ length $=50 \mathrm{~mm}$

4. PROTECTION OF HYDRAULIC UNITS AFTER REMOYAL :

Seal all the openings in the units as dismantling proceeds.
IMPORTANT NOTE :
All the plugs and caps must be carefully cleaned before use.

5. PRECAUTIONS BEFORE ASSEMBLY.

All steel pipes must be blown through with compressed air. Rubber pipes and ring seals must be carefully washed in an appropriate solvent then blown dry with compressed air. All hydraulic units must be cleaned with an appropriate solvent only. Nothing else must be used for this purpose. After cieaning, blow dry thoroughly with compressed air.

6. FITTING THE JOINT SEALS.

MOST IMPORTANT : Only use joint seals corresponding to the fluid used in the hydraulic circuit of the vehicle; (synthetic or mineral fluid). For this, consult the "table of seals" that we have sent you.
a) Sealing plates :

Before fitting a sealing plate, make sure that the ring seals are correctly positioned and in good condition It is preferable to renew the ring seals at each dismantling.
When assembling in position, make quite sure that the fluid holes in the seal plates coincide with those in the flanges.
b) Sealing sleeves:

TT. 00.5

NOTE : All sealing sleeves must be renewed after each dismantling operation :

1) Place a sealing sleeve "a» on the pipe. This sleeve should be set back 2 mm from the end of the pipe.
2) Centralise the pipe in the bore by aligning it with the axis of the bore.

MOST IMPORTANT : Make quite sure that the end of the pipe enters the small bore "bn.
3) Screw up the union nut by hand. On certain units the axis of the bore is oblique relative to the face of the boss for the nut.
4) Lightly tighten the nut.

Vehicles using synthetic fluid LHS (main reservoir painted blach)
Tighten the nut to 5,9 to $7,5 \mathrm{~m} \Lambda \mathrm{~N}(0,6$ to $0,8 \mathrm{~m} . \mathrm{kg})\left(4 \frac{1}{2}\right.$ to 6 ft .Ibs $)$
Vehicles using mineral fluid LHM (main reservoir painted green)
Tighten the nut to 9 to $11 \mathrm{~m} \Lambda \mathrm{~N}$ (0.9 to $1.1 \mathrm{~m} \cdot \mathrm{~kg}$) ($6 \frac{1}{2}$ to 8 ft .Ibs)
This slight tightening of the nut is sufficient to ensure a good seal. Excessive tightening will cause leakage.

c) Ring seals :

NOTE: These ring seals are so designed that their efficiency increases proportionately with the pressure in the pipes. Tightening the union does not increase sealing efficiency.

7. TACHOMETERS (REVOLUTION INDICATORS)

Certain checks and adjustments cannot be effectively carried out without the use of a tachometer.
To ensure accuracy when making these checks a precision instrument must be used. At 600 r.p.m. particularly, it must be accurate to within ± 20 r.p.m.

Electric tachometers

The following instruments have been tested by us with satisfactory results :
"SOURIAU, type 1494 " sold by Société SOURIAU, 13 rue du Général Galliéni - 92 - BOULOGNE
"BOSCH, ref. 0681.100.502" sold by the Société BOSCH-FRANCE, 32 Avenue Michelet, 93 - SAINT-OUEN
"SUN, model TDT. 12 " sold by the Société SUN-OVERSEAS, 19 rue de Paris - 92 -CLICHY
"CRIPTON, model BC. 401/FA 7418" sold by the Société NAUDER, 23 rue Boissière - 75 - PARIS (16è)

Electric tachometers should be checked periodically (about once a month). This check can be made by means of a stroboscopic disc MR 630-58/9.

Stroboscopic disc.

This simple instrument can be made by you. For the constructional dimensions ask for note MR. 630-58/9 from our Service " Division Technique Apres-Vente" 163, avenue Georges Clemenceau, 92 -NANTERRE.
The pulleys and belts must be in good condition, the pulleys correctly aligned and the belt tension correct.

Checking the tachometer.

The stroboscopic disc is used for checking the electric tachometer. It enables the following engine speeds to be checked : 600 engine r.p.m. i.e. 300 HP pump r.p.m. : 1200 engine r.p.m. i.e. 600 pump r.p.m., and all the multiples of $300 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m}$. on the high pressure pump, but at engine speeds over $1200 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m}$ reading becones very difficult.

NOTE : The disccannot replace a tachometer, it will only check the speeds given above.

8. PRESSURE GAUGES.

When carrying out checks or adjustments on hydraulic units of the car, the use of pressure gauges is essential. In just the same way as precision tachometers are necessary for accurate checking and adjustment, so it is necessary to use sufficiently accurate pressure gauges.

The pessure gauges of test benches 2290-T and 3654-T are of the required accuracy. To preserve this accuracy it is necessary to protect the gauges by using dashpots (dampers). These are sold by Société FENWICK.

We strongly advise periodic checking of these pressure gauges, by comparison with a new pressure gauge reserved for the purpose. This pressure gauge can only be used with one hydraulic fluid (synthetic or mineral). It must therefore be very clearly marked (in red or in green accordingly).

9. CHECKS BEFORE COMMENCING OVERHAUL.

If any irregularity of operation occurs, make quite sure that the H.P. hydraulic circuit is under pressure before doing anything else :

To do this, proceed as follows :
With the engine running at idling speed :

- Unscrew the pressure regulator bleed screw $1-\frac{1}{2}$ turns (one should be able tohear the pressure release)
- Tighten the bleed screw, and the valve must cut-out in less than 20 seconds (the moment of cut-out is indicated by a reduction in the noise of operation)

If this check is negative, check the following points in the order given :

- That there is sufficient hydraulic fluid in the reservoir.
- That the reservoir filter is perfectly clean, and in good condition.
- That air is not entering the suction pipe of the pump.
-That the belts of the high pressure pump are not slipping.
- That the bleed screw is securely closed.

10. CHECKS AFTER WORK HAS BEEN CARRIED OUT.

After all work, check the following :

1) All unions for possible leaks.
2) The clearance between pipes : the pipes must not touch each other nor must they touch any part of the vehicle, fixed or movable. Pay particular attention when assembling a steering rack or steering wheel.

DRAINING THE HYDRAULIC CIRCUIT.

(Fluid LHS 2 or LHM)
DRAINING.

1. Position the vehicle on a pit or car-lift
2. Place the manual height control in the . lon . position.
3. Unscrew the bleed screw on the pressure-regulator
4. On rehicles with pouer-steerink:

Move the steering to left and right several times
5. Release the pressure in the brakie circuit Operate the hydraulic brake control by pressing on the brake pedal several times in succession. NOTE
 the brake pressure reserve is constituted by two accumulators, one front and one rear
 the pressure reserve consists of only one front accumulator. The rear brakes are fed by the rear suspension.
6. Empty the dust-shields (1) on the front suspension cylinders.
Compress the dust shields (1) by hand so that as much of the fluid contained in them as possible returns to the reservoir.

7. Drain the reservoir. (2)

The reservoirs (2) have a flexible drain tube (6). Slacken the hose clip (4) situated at the upper end of the tlexible tube (6).
Free the flexible tube (6) from the spring clip (5).
Remove the plug (3).
Drain the reservoir.

Use a syrince to empty the reservoir.

REFILLING.

8: On vehicles produced since September 1967.

- Place the plug (1) on the flexible pipe (3).

Insert the flexible tube (3) into the spring-clip (2).
9. Clean the reservoir filter

- with alcohol for the L.H.S.2. fluid.
- with petrol or white spirit for the L.H.M. fluid

Blow it through with compressed air.
10. Refill the reservoir with hydraulic fluid (LHS 2 or LHM as appropriate).
11. Prime the high pressure pump.

- Fill the pump with hydraulic fluid by pouring some into the inverted reservoir filter housing.
- Start the engine, allow to run for several minutes.

12. Tighten the pressure-regulator bleed screw.
13. Fill up the hydraulic fluid reservoir.
(a) I chicles produced since september 1960.

- Place the manual height control in the "high" position.
- The level of hydraulic fluid in the reservoir must be between the min. and max. on the transparent gauge (4).
b) I chicles produced before september 1960 .

The level of hydraulic fluid in the reservoir is established when the vehicle is in the "normal running" position.

Manual 814-1

REPAIRING A PLASTIC PIPE

NOTE
a) This operation can be carried out by sleeving the pipe.
b) A pipe cannot have more than two sleeves which must be approx. 800 mm appart in order to preserve its flexibility.
c) The qlue to be used is RILSAN cement sold in 60 co bottie by Societe BOYRIVEN, 37 bis rue de Villiers, 92200 NEUILLY-sur-SEINE-FRANCE

Phone : Maillot 36-11

(RILSAN glue inflanes the skin and should be spreaci exclusively with a wooden spatula).

1. Cut off the pipe and roughen about. 90 mimi at each end with abrasive paper. $\mathrm{N}^{*} 600$.
2. Clean both ends and sleeve carefully with trichlorethylene.
3. Wam up riisan qlue in water-bath to 60 C 1140 F)

NOTE: It is essential to operate as described above in order to reduce the drying-time.
4. Coat the pipe ends and the sleeve imner part vith glue.

Allow to dry for a few minutes.
Insert pipe ends in the sleeve.
Allon the assembly to dry for 3 to 4 hours before making use of the repaired pipe.

APPROVED PASTES, GLUES AND SOLVENTS

PRODUCTS	USES	SUPPLIERS
POLYCLENS	Grease remover for mechanical assemblies when cold. Can be in pure or diluted form. Rinse off with plenty of water.	ACBIMEX S.A.M. 12, avenue F.D. Roosevelt 75008 - PARIS TeI. : 359-84-32 or : Palais de la Scala MONTE CARLO TeI. : 30-53-79
ADEXOLIN 56	Glue for gasket of water pump turbine	AREXONS (S.I.P.A.L.) 406, cours Emile ZOLA 69100 - VILLEURBANNE Tel. : 84-17-35
RILSAN GLUE PROTOJOINT	Glue for plastic tube Sealing of the housinghalfs or covers Resistant to hydrocarbons	BOYRIVEN 37 bis, rue de Villiers 92200 - NEIJILLY S/ SEINE Tel.: 624-36 11 Jean BRASSART 44, rue La Boétie 75008 - PARIS Tel. : 359-54-82
CURTYLON	Paste for casing gaskets	CEFILAC Departement Joints CURTY 25, rue Áristide Briand : 69800 SAINT-PRIEST TeI. : 20-08-94 or 7 to 11, rue de la Py - 75020 - PARIS Tel. : 797-01-49
DEVCON LOCTITE AUTOFORM	Sealing porosities in casings Sealing of the housinghalfs or covers Resistant to hydrocarbons	COMET 10, rue Emile Cazeau 60300 - Z.I. de SENLIS Tel. : 455-35-40
METALIT	Sealing porosities in casings	DISIMPEX 1, rue Gcethe 75016 - PARIS TeI. : 727-89-59
SILASTIC 733 RTV	Sealing porosities in casings	
MOLYKOTE 557	Silicone grease for water pump	DOW CORNING S.A.R.L. 140, avenue Paul Doumer 92500 - RUEIL-MALMAISON Tel. : 977-00-40

PRODUCTS	USES	SUPPLIERS
METOLUX A	Sealing porosities in casings	METOLUX 167, avenue de Fontenay 94300 - VINCENNES Tel. : 808-55-11
OIL AND GREASE REMOVER	Grease remover for mechanical units when cold	MULLER et Cie 28, avenue de I'Opera 75002 - PARIS TeI. : 742-58-36
ROCOL ASP	Grease for water pump	LABO INDUSTRIE 1, rue Lavoisier 92000 - NANTERRE Tel. : 204-51-60
GREASE GSI 160	Silica grease for bearings	P.C.S.A. 23, rue Bossvet 91160-LONJUMEAU TeI. : 920-00-71
ARALDITE	Glue	PROCHAL 5, rue Bellini 92800 - PUTEAUX Tel. : 772-18-33
MASTI-JOINT HD 37	Gasket paste	REXON 33, avenue du General Bizot 75012 - PARIS Tel. : 344-48-31
PLATE-LOWAC	Gasket paste (resistant to hydrocarbons)	S.E.B.I.S. 3-5, rue de Metz 75010 - PARIS Tel. : 770-13-08
PLASTISOL D.C.O. 625	Sealing paste for casing studs	SYNTHESIA 29. iue de $1^{1} A_{\text {rbroust }}$ 94130-NOGENT S/MARNE TeI. : 871-09-36
HEXYLENE GLYCOL MASTIC GLUE Ref. 1500 (COLLAFEU)	Rinsing out hydraulic piping (LitS 2) Sealing paste for inlet manifold heating pipes	FRANCAISE DES MATIERES COLORANTES 15, boulevard de l'Amiral Bruix 75016 - PARIS TeI.: 525-52-00 Ets BARTHELEMY 61. 64, 71, rue DEFRANCE 94300 - VINCENNES Tel. : 328-42-87

LOCTITE

The spare parts dept sells two types of LOCTITE under the following numbers : GX. 01.45901 A GX. 01.46001 A
as well as the catalyst LOCQUIC-T GX. 0146101 A
USE : LOCQUIC-T is a catalyst meant for parts to which LOCTITE is to be applied. Non-metallic parts require previous treatment with LOCQUIC-T'. Most zinc, cadmium and aluminium plated parts also require this treatment to allow the LOCTITE to harden quickl;. LOCQUIC-T can also be used to clean grease from the parts. Use it also to give a better surface for adhesion.

Spray the surfaces to which the LOCTITE is to be applied. Brush or wipe to remove grease. Spray again to make perfectly clean. Repeat the operation if necessary. Do not apply the LOCTITE until the catalyst is completely dry.

WARNING: Precautions to be tuken. Ensure good ventilation when using
LOCTITE. Avoid prolonged or repeated contact with the skin. Do nct swallow. Do not spray onto painted surfaces, keep the can of LOCTITE at a temperature of less than $44^{\circ} \mathrm{C}\left(111^{\circ} \mathrm{F}\right)$

4. Engine type DV.

(Inleimanifold internal, distributor at rear \rightarrow 10/1968
(Inlet manifold external, distributor at front $\longmapsto 10 / 1968$

- Fiscal rating (French)

11 CV

- Number of cylinders
.4 in line
- Cubic capacity 1.985 cc

- Bore	86 mm
- Stroke. 85.5 mm
- Compression ratio	$\rightarrow 10 / 1971 \ldots . .8 / 1$
	10/1971.....8.75

- Maximum torque :

$\rightarrow-10 / 1968\left\{\begin{array}{l}14.7 \mathrm{mkg}(106 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{SAE}) \\ 14.3 \mathrm{mkg}(104 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm} \text { (DIN) }\end{array}\right.$
$\mapsto 10,1968\left\{\begin{array}{l}14 \mathrm{mkg}(101 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{SAE}) \\ 13.7 \mathrm{mkg}(99 \mathrm{ft} \mathrm{Ibs}) \text { ait } 3000 \mathrm{rpm} \text { (DIN) }\end{array}\right.$
$\mapsto 10 / 1971\left\{\begin{array}{l}15 \mathrm{mkg}(108 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{SAE}) \\ 14.7 \mathrm{mkg}(106 \mathrm{ft} \mathrm{lbs}) \text { at } 2500 \mathrm{rpm}(D I N)\end{array}\right.$
5. Oil circulation diagram.

I. GENERAL CHARACTERISTICS

1. Engine type DX, DJ, DXF, DJF. \rightarrow 10/1972
(Inlet manifold exiernal, distributor at front)

- Fiscal rating (French)............... 12 CV
- Number of cylinders.................. 4 in line
- Cubic capacity \qquad 2.175 cc
- Brake horsepower :
$\rightarrow 110.1968$
109 HP SAE at 5500 rpm 100 HP DIN at 5500 rpm

Manual 814-1

- Bore 90 n	
- Stroke.................................. . . 85.5	
- Comp	. $8.75 / 1$

- Maximum 'orque :
$\rightarrow-1 / 0 \cdot 1968\left\{\begin{array}{l}17.7 \mathrm{mkg}(128 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{SAE}) \\ 16.7 \mathrm{mkg}(120 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{DIN})\end{array}\right.$
$\mapsto 10 / 1968\left\{\begin{array}{l}17.4 \mathrm{mkg}(125 \mathrm{ft} \mathrm{Ibs}) \text { at } 4000 \mathrm{rpm}(\mathrm{SAE}) \\ 17 \mathrm{mkg}(123 \mathrm{ft} \mathrm{Ibs}) \text { at } 3500 \mathrm{rpm} \text { (DIN) }\end{array}\right.$

2. Engine type $\mathrm{DX} 4(19 \mathrm{~N}) \rightarrow 10 / 1972$

- Fiscal rating (French).............. 13 CV
- Number of cylinders................ 4 in line
- Cubic capacity.
2.350 cc

- Compression ratio........................ 8.75/1

- Brake horsepower:

124 HP SAE at 5750 rpm 115 HP DIN AT 5500 mpm

- Maximum torque:

$\longmapsto 10 / 1972$
$19.1 \mathrm{mkg}(140 \mathrm{ft} \mathrm{lbs})$ at $4000 \mathrm{rpm}(\mathrm{SAE})$

3. Engine type DY, DL, DYF, DLF, DT.

(lntet manifold internal, distributor at rear $\longrightarrow 110$ 1968)
(Inlet manifold external, distritutor at frout $\longmapsto 101968$)

- Fiscal rating (French)............11 CV	Bore..................................... 86 m
- Number of cylinders.............. 4 in line	Stroke.................................. 85.5 mm
Cubic capacity.....................1.985 cc	Compression ratio....................8.75/1

- Brake horsepower:

$\rightarrow 10 / 1968\left\{\begin{array}{l}90 \mathrm{HPSAE} \text { at } 5250 \mathrm{rpm} \\ 84 \mathrm{HP} \mathrm{DIN} \text { at } 5250 \mathrm{rpm}\end{array}\right.$
$\mapsto 10 / 7968\left\{\begin{array}{l}103 \mathrm{HPSAE} \text { at } 6000 \mathrm{rpm} \\ 91 \mathrm{HP} \text { DIN at } 5900 \mathrm{rpm}\end{array}\right.$
$\mapsto 10 \cdot 10-1\left\{\begin{array}{l}108 \mathrm{HP} \mathrm{SAE} \text { at } 5780 \mathrm{rpm} \\ 99 \mathrm{HP} \text { DIN at } 5500 \mathrm{rpm}\end{array}\right.$

- Maximum torque :
$\rightarrow 10 / 1968\left\{\begin{array}{l}15.2 \mathrm{mkg}(110 \mathrm{ft} \mathrm{Ibs}) \text { at } 3500 \mathrm{rpm}(\mathrm{SAE}) \\ 14.6 \mathrm{mkg}(106 \mathrm{ft} \mathrm{Ibs}) \text { at } 3500 \mathrm{rpm} \text { (DIN) }\end{array}\right.$
$\longmapsto 101968\left\{\begin{array}{l}14.9 \mathrm{mkg}(108 \mathrm{ft} \mathrm{Ibs)} \mathrm{at} \mathrm{3400rpm(SAE)} \\ 14.4 \mathrm{mkg}(104 \mathrm{ft} \mathrm{Ibs}) \text { at } 3500 \mathrm{rpm} \text { (DIN) }\end{array}\right.$
$\mapsto 10.1071\left\{\begin{array}{l}15.5 \mathrm{mkg}(112 \mathrm{ft} \mathrm{Ibs}) \text { at } 4000 \mathrm{rpm}(\mathrm{SAE}) \\ 15.3 \mathrm{mkg}(110 \mathrm{ft} \mathrm{Ibs}) \text { at } 3500 \mathrm{rpm}(\mathrm{DIN})\end{array}\right.$

4. Engine type DV.

$\begin{aligned} & \text { (Inlet manifold internal, distributor at rear }\end{aligned} \rightarrow-10 / 1968$

- Fiscal rating (French)........................... 11 CV
- Number of cylinders.............................. 4 in line
- Cubic capacity \qquad 1.985 cc

Bor	86 mm
- Stroke. 85.5 mm
- Compression ratio	$\rightarrow 10 / 1971 \ldots . .8 / 1$

- Stroke... 85.5 mm
$\mapsto 10 / 1971 \ldots . .8 .75 / 1$

- Brake horsepower :

-10/1968	84 HP SAE at 5250 rpm 78 HP DIN at 5250 rpm
$\mapsto 10 / 1968$	91 HP SAE at 5750 rpm
	. 81 HP DIN at 5500 rpm
$\longmapsto 10^{\prime} 1971$	98 HP SAE at 5750 rpm
	89 HP DIN at 5500 rpm

- Maximum torque :

$\rightarrow 10 \%^{\prime} 1968\left\{\begin{array}{l}14.7 \mathrm{mkg}(106 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{SAE}) \\ 14.3 \mathrm{mkg}(104 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm} \text { (DIN) }\end{array}\right.$
$\mapsto 10^{\prime} 1968\left\{\begin{array}{l}14 \mathrm{mkg}(101 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{SAE}) \\ 13.7 \mathrm{mkg}(99 \mathrm{ft} \mathrm{Ibs}) \text { ai } 3000 \mathrm{rpm} \text { (DIN) }\end{array}\right.$
$\mapsto 10 / 1971\left\{\begin{array}{l}15 \mathrm{mkg}(108 \mathrm{ft} \mathrm{Ibs}) \text { at } 3000 \mathrm{rpm}(\mathrm{SAE}) \\ 14.7 \mathrm{mkg}(106 \mathrm{ft} \mathrm{lbs)} \text { at } 2500 \mathrm{rpm}(\mathrm{DIN})\end{array}\right.$

5. Oil circulation diagram.

CROSS SECTION

Manual 814-1

ENGINE
LONGITUDINAL SECTION

II - PARTICULAR FEATURES

1. Housings.

a) Cylinder block.

- Crankcase and crankshaft bearing caps are matched.
- The crankshaft bearing caps are marked from the front of the engine (flywheel end) by the figures 1-2-3-4.
- Bore of crankshaft bearings 68.7. $\pm .0 .005 \mathrm{~mm}$
- General out-of-flat on the securing face of the cylinder head 0.05 mm max.
- Tighten screws securing main bearing caps to......... 90 to $100 \mathrm{~m} \Lambda \mathrm{~N}(9$ to 10 mkg) (65 to 72 ft Ibs)
b) Crankcase.

- Tighten drain plug to.. 35 to $45 \mathrm{~m} \Lambda \mathrm{~N}(3.5$ to 4.5 mkg) (25.3 to 32.5 ft lbs)
- Tighten screws securing closing panel of clutch casing to. 9 to $12 \mathrm{~m} \wedge \mathrm{~N}(0.9$ to 1.2 mkg$)(6.5$ to 6.68 ft Ibs$)$
c) Timing gear housing.
- Tighten securing screws and nuts to $\ldots \ldots \ldots \ldots \ldots \ldots . .14$ to $10 \mathrm{~m} \Lambda \mathrm{~N}$ (1.4 to 1.9 mkg) (10.01 to 13.75 ft Ibs)

2. Crankshaft and connecting rods.

a) Crankshaft with 5 bearings.

- Diameter of crank pins
64.04 and 63.54 mm

Crankshaft bearings :
Bore (two possibilities)
$\begin{array}{ll}28.6 & +0.100 \\ -0.150\end{array}$
Outside diameter
$\begin{aligned} & 68.705+1.200 \\ &-0.200\end{aligned}$
NOTE: On all types of engines, crankshafts are made of aluminium-alloy, except on those fitted with a Borg-Warner gearbox, which are made of cupro-lead.

- End float of crankshaft
0.045 to 0.160 mm

NOTE : The adjustment of the end float crankshaft is made by choosing one of the lower half-cheeks of the central bearing, except for engines fitted with a Borg-Warner gearbox, where two half-cheeks can be found (upper and lower) on one side, or, the other of the central bearing.
Half-cheek of central bearing (two possibilities)....... $\left\{\begin{array}{l}3.10 \text { to } 3.14 \mathrm{~mm} \\ 3.14 \text { to } 3.18 \mathrm{~mm}\end{array}\right.$

- Tighten main bearing cap screws to....................... 90 to $100 \mathrm{~m} \Lambda \mathrm{~N}$ (9 to 10 mkg) (65 to 72 ft Ibs)
b) Connecting rods.

Note :
$\longmapsto \quad-1968$ on DY-DL-DYF-DLF
$\longmapsto \quad 101968$ on all types except DV

The big end bearings, connecting rod and small end bush bear holes to ensure that oil is ejected to cool the underside of the piston crown.

- It is not possible, without special equipment.
to change the small bushes.
$\mapsto \quad 21968$ on DY-DL-DYF-DLF
$\longmapsto 10 \quad 1968$ on all types except DV

3. Pistons and piston rings:

b) Piston rings :

Piston ring	Qu.	Tickness (mm)	Width (mm)			Clearance (mm)		
			¢ 93.5	¢ 90	¢ 86	$\phi 93.5$	¢ 90	中 86
Compression ring (3)	1	2-0.010	4 ± 0.12	3.9 ± 0.12	3.82 ${ }_{-}^{0} 0.25$	0.35 to 0.55	0.35 to 0.55	0.20 to 0.40
Scraper ring (2)	1	2-0.010	4 ± 0.12	3.9 ± 0.12	3.82- ${ }_{-}^{0} 0.25$	0.35 to 0.55	0.35 to 0.55	0.20 to 0.40
Oil control ring (1)	1	* ${ }^{-0.0 .010}$	2.9 ± 0.12	3 ± 0.12	3.17-0 ${ }^{-0} 0$	0.25 to 0.40	0.25 to 0.40	0.20 to 0.40

* NOTE : For pistons of 93.5 mm , the thickness of the oil control ring is $4_{-0.022}^{-0.010} \mathrm{~mm}$.

NOTE : Certain engines are fitted with simple oil control rings (l) (e.g. DV-DY-DL) or rings with expander and spring (DX-DJ). During repairs the ring with expander leaf-spring must be fitted on to all types of engine.

4. Barrels and cylinder head gasket :

a) Paper joint for base of barrel :
$(\rightarrow$ 9/1968: Joint with packing for barrels $\phi 90 \mathrm{~mm}$ only.
$\longmapsto 9$ / 1968 : Joint without packing for barrels $\phi 86$ and 90 mm .
$\longmapsto 9 / 1971$: Joint without packing for barrels $\phi 93.5 \mathrm{~mm}$
b) Cylinder head gasket : two types of gasket, corresponding to the two types of joints on the barrel bases:

- Gasket with circular seal : to be fitted with barrel joints with packing:.
- Gasket with oval seal
- Gasket with oval seal : to be fitted with barrel joints without packing.

IMPORTANT : Observe this difference when changing the cylinder head gasket.
c) Pistons and barrels are matched.

5. Cylinder head :

- Origina - Max. bow - Max. r a) Valve - Valv - Width - Nomi	ckness (surface) \qquad s : at angle : Inlet. Exha valve seat : diameter of valv Inlet Exha	$\begin{aligned} & -10 / 1968 . \\ & -10 / 1968 . \end{aligned}$		0 mm 0 mm 0° to 1.2 mm mm mm 5 mm
b) Valve		Outside ϕ of guide	Cylinder head bore	Bore of guide
Inlet	1st possibility 2nd possibility	$\begin{aligned} &+0.075 \\ &+0.055 \mathrm{~mm} \\ & \hline 13.25+0.075 \\ &+0.055 \end{aligned}$	$\begin{gathered} +0.023 \\ 13-0.003 \mathrm{~mm} \\ \hline 13.25+0.023 \\ +0.003 \mathrm{~mm} \end{gathered}$	$8^{+}+0.015 \mathrm{~mm}$
Exhaust	lst possibility	$\begin{array}{r} 13+0.065 \\ +0.045 \\ \hline 13.25+0.065 \\ +0.045 \end{array}$	$\frac{13+\begin{array}{l}+0.023 \\ 0.003\end{array} \mathrm{~mm}}{13.25+\begin{array}{l}\text { + } \\ -0.023\end{array} \mathrm{~mm}}$	$8.99 \begin{aligned} & +0.015 \\ & -0.010\end{aligned}$

c) Changing and positioning the guides: Use instrument 3079-T.
d) Tightening torques :

- Cylinder head screws $\left\{\begin{array}{l}\text { lst tightening......................... } 30 \mathrm{~m} \Lambda \mathrm{~N}(3 \mathrm{mkg})(23 \mathrm{ft} \mathrm{Ibs}) \\ \text { Final tightening........................ } 60 \text { to } 65 \mathrm{~m} \Lambda \mathrm{~N}(6 \mathrm{to} 6.5 \mathrm{mkg})(43 \mathrm{to} 47 \mathrm{ft} \mathrm{Ibs})\end{array}\right.$

NOTE: Observe tightening sequence.

- Nut on exhaust rocker shaft 21 to $28 \mathrm{~m} \Lambda \mathrm{~N}(2.1$ to 2.8 mkg) (15.19 to 20.3 ft lbs)
- Screw securing cylinder head cover.......................... 6 to $8 \mathrm{~m} \wedge \mathrm{~N}(0.5$ to 0.8 mkg$)(3.6$ to 5.8 ft Ibs$)$
- Nut securing closing plate 21 to 28 mAN (2.1 to 2.8 mkg) (15.19 to 20.3 ft Ibs)

6. Valves.

a) Valves :

- Valve seat angle
- Outside diameter of head
- Diameter of stem
- Total length (mm).

INLET	EXHAUST
All Types All Types $\rightarrow-10 / 1968$ $\mapsto 10 / 1968$	All Types

b) Valve springs :

- Winding direction \qquad

OUTER	INNER	
All Types	All Types \rightarrow 10/1968	All Types $\longmapsto 10 / 1968$
right hand 39 mm under $28.9 \pm 1.6 \mathrm{~kg}$ 30.5 mm under $60 \pm 3.2 \mathrm{~kg}$	30.7 mm under $7.4 \pm 0.5 \mathrm{~kg}$ 22 mm under $12 \pm 1 \mathrm{~kg}$	hand 31 mm under $12.6 \pm 1 \mathrm{~kg}$ 22.5 mm under $25 \pm 1 \mathrm{~kg}$

c) Upper cups:
\rightarrow 10/1968: The upper cups for the inlet-valve springs are different from those for the exhaust-valves.
Do not confuse them.
\mapsto 10/1968: They are identical.
d) Split cotters :
\rightarrow 10/1968: The split cotters for the inlet valves are different from those for the exhaust valves.
Do not confuse them.
\mapsto 10/1968: They are identical.

7. Valve timing.

a) Camshaft

- End-float 0.05 to 0.09 mm
- Cam lift

Exhaust... $6.144 \pm 0.02 \mathrm{~mm}$
b) Push rods

Diameter
$24+0.05 \mathrm{~mm}$

- Lenght
$45^{+0.05}$
$45-1$
c) Setting :

Theoretical valve clearance

$\rightarrow 10 / 1968$	$\longmapsto 10 / 1968$
1 mm	1.1 mm
5°	$0^{\circ} 30^{\prime}$
37°	$42^{\circ} 30^{\prime}$
$40^{\circ} 30^{\prime}$	$38^{\circ} 30^{\prime}$
$6^{\circ} 30^{\prime}$	$4^{\circ} 30^{\prime}$

d) Engine timing :

With pistons 1 and 4 at TDC place the marks on the camshaft and crankshaft pinions opposite each other and aligned with the pinion axes.
e) Camshaft drive chain :

Clearance between tensioner and limiting device........ 0.1 to 0.5 mm .
f) Tightening torques :

Screw for camshaft fork....................................... 14 to $19 \mathrm{~m} \Lambda \mathrm{~N}(1.4$ to 1.9 mkg) (10.01 to 13.75 ft lbs)
Screw securing timing gear wheel............................ 14 to 19 mAN (l .4 to 1.9 mkg) (10.01 to 13.75 ft Ibs)
Screw securing chain guide................................... 14 to $19 \mathrm{~m} \Lambda \mathrm{~N}$ (1.4 to 1.9 mkg) (10.01 to 13.75 ft Ibs)
Screw securing chain tensioner............................... 9 to $11 \mathrm{~m} \Lambda \mathrm{~N}(0.9$ to 1.1 mkg) (6.5 to 7.9 ft Ibs)

8. Valve rackers.

a) Pushrods :

Inlet opens BTDC

Inlet closes ABDC
Exhaust opens BBDC
$40^{\circ} 30^{\prime}$
$38^{\circ} 30^{\prime}$
Exhaust closes ATDC \qquad

ADJUSTING THE VALVE ROCKER CLEARANCES

EXHAUST

VEHICLES ALL TYPES

ADJUSTMENT

1. Place the auxiliary clutch control in the engaged position. (Hydraulic gearchange vehicles only).
2. Disconnect the earth cable from the battery.
3. Remove the cylinder head cover:

Disconnect the spark plug leads.
Remove the cylinder head cover with its gasket. (Do not Iose the seals for the spark plug wells).

4. Adjust the clearances of the valve rockers

 (hot) to :$0,20 \mathrm{~mm}$ ($0,008 \mathrm{ins}$) for the inlet valves $0,25 \mathrm{~mm}$ ($0,010 \mathrm{ins}$) for the exhaust valves
NOTE: The adjustment is carried out while the engine is hot.

	Valve to be fully open	Adjust the valve rockers	
		Inlet	Exhaust
	Exhaust lst cylinder Exhoust 3rd cylinder Exhaust 4th cylinder Exhaust 2nd cylinder	3rd 4th 2nd lst	4th 2nd lst 3rd

a) All types of vehicle except D.bw : Turn the engine with the starting handle, (after having operated the auxiliary clutch control, on vehicle with hydraulic gearchange).
b) D. bw Vehicles :

Place selector in position " P ".
Turn the engine using the starter motor fed by a correctly charged 6 volt battery.

IMPORTANT : Never try to turn the engine by the tightening nut of the camshaft pulley.

OBSERVATION :

It is preferable to carry out the adjustment while the engine is hot. If it is not possible, adjust the valve rockers, engine cold, to :
$0,15 \mathrm{~mm}(0,006 \mathrm{in})$ for the inlet valves $0,20 \mathrm{~mm}(0,008 \mathrm{in})$ for the exhaust valves.
5. Fit the cylinder head cover with its gasket. Make sure that the gasket is correctly positioned.
Tighten the bolts $7 \mathrm{~m} \Lambda \mathrm{~N}(0.75 \mathrm{~m} . \mathrm{kg} .5 .4 \mathrm{ft} . \mathrm{lbs})$.
(Copper washers under the heads of the securing bolts).
6. Connect up the plug leads and the battery earth lead.
7. Put the hydraulic circuit under pressure by operating the auxiliary clutch control (on hydraulic gearchange vehicles only).
8. If valve rocker noise persits after adjustment, procede as follows :

- Remove the battery.
- Loosen the securing bolts of the alternator and the HP pump. Free the belts of the drive pulley.
- Engage the parking brake.
- Loosen the nut securing the drive pulley (1) and withdraw the pulley forwards as far as possible.
- Loosen the securing bolts (2) of the housing for the front camshaft bearing.
- Turn the crankshaft to bring the exhaust valve of cylinder 4 to full opening.
- Lock the securing bolts (2) of the bearing housing.
- Fit the drive pulley.

Fit a new securing nut and tighten it to $72-80 \mathrm{~m} \Lambda \mathrm{~N}(7-8 \mathrm{~m} . \mathrm{kg})(51-57 \mathrm{ft} . \mathrm{lbs})$.

- Release the parking brake.
- Fit and tension the belts. Tighten the securing bolts of the alternator and the HP pump.
- Fit the battery and its support frame.
- Adjust the rockers as previously described (§§1-7).

ADJUSTMENT OF THE ENGINE MOUNTINGS

(Engine out of car)

1381
-゙もโ8 [onupW

ADJUSTMENT

NOTE: The adjustment of the rear flexible mountings must be made under load; the engine complete, in running order and resting on its four support points.

1. Place the engine-gearbox assembly on stand 3083-T-bis and stand MR 630-42/13.

Raise the engine-gearbox assembly by the ends of the front crossmember, in order to free the front end of the crankcase from the engine stand at "a".

The engine gearbox assembly will then rest only on its four support points.
2. Release lock-nut (1).

Adjust the nuts (2) so as to obtain a dimen$\operatorname{sion} \mathrm{L}=91+\underset{0}{2} \mathrm{~mm}$ on each flexible mounting
(this measurement will be made by.using template MR 630-51/38).

Tighten the nuts (1) to $100 \mathrm{~m} N \mathrm{~N}(10 \mathrm{mkg})$ (72 ft Ibs).

CARBURETTORS

CHARACTERISTICS AND PARTICULAR FEATURES

1. WEBER CARBURETTORS

1-Characteristics:

Vehicle types		DY - DXF - DJ - DJF				DY - DYF - DL - DLF - DT			
Introduced		$\longrightarrow 110 / 1968$		$\longmapsto 10 / 1968$		$\longrightarrow 10 / 1968$		$\longmapsto 10 / 1968$	
Vehicles with hyd-gearchange Vehicles with man-gearchange Vehirles with Borg-Warner		$\begin{aligned} & 28 \times 36 \mathrm{DDE} \\ & 28 \times 36 \mathrm{DDE} \mathrm{Al} \end{aligned}$		$\begin{aligned} & 28 \times 36 \text { DLE } \\ & 28 \times 36 \text { DLE Al } \\ & 28 \times 36 \text { DLE A5 } \end{aligned}$		$\begin{aligned} & 28 \times 36 \mathrm{DDE} 2 \\ & 28 \times 36 \mathrm{DDE} \mathrm{~A} 2 \end{aligned}$		$\begin{aligned} & 28 \times 36 \text { DLE } 2 \\ & 28 \times 36 \text { DLE A. } 2 \end{aligned}$	
Items	Key	Primary Choke	Second. Choke						
Venturi diameter	K	23	27	23	27	23	27	20	26
Main jet	Gg	130	175	130	175	120	170	110	155
Air correction jet	a	155	155	AB	AB	140	140	AD	AA
Emulsion tube	s	F 16							
Idling air jet	u	185	85	AD	AA	185	85	$A D$	AA
Idling jet	g	50	70	50	70 or 75*	45	55	50	70 or $75 *$
Progression holes dia.		80-90-120	80-90-170	80-90-120	80-90-170	80-90-120	80-90-170	80-90-12	80-90-170
Brass float (weight in gr.)	F	11	11	11	11	11	11	11	11
Needle valve	P	175	175	175	175	175	175	175	175
Accelerator pump injector	J	60	60	60	60	60	60	60	60
Accelerator pump valve	H	55	55	55	55	55	55	55.	55
Diffuser	d	3,5	3,5	3,5	3.5	3.5	3.5	3,5	3.5

2-Special points:

- Stranqler flap setting:

With the stranglar flap closed. and the carburettor in idling position, the distance between the point of the screw (1) (Throttle stop screw) and the lug (2) on the primary choke, must be : $\alpha=3.8 \mathrm{~mm}$.

I/ necessary bend the lug (2) (o) obtain this distance.

- Idling adjustment on primary choke

With the butterfly closed, the edge of the screw (1) in contact, turn the screw $1 / 3$ of a turn. At this moment a feeler-gauge of $5 / 100$ must pass between the butterfly edge and the bore.

- Adjustment of the float levels :

With the cover turned up-side down, the distance between the float and the cover gasket must be

$$
\mathrm{b}=4.75 \pm 0.1 \mathrm{~mm}
$$

If it is not, adjust the tongue (3) which must, in this position, be parallel to the joint face of the cover and 19.75 mm away from the paper gasket.

- When this cover is in its normal position, the distance between the float and the cover gasket must be : $c=11.5 \pm 0.1 \mathrm{~mm}$
If it is not, adjust the tongue (4).

SOLEX CARBURETTOR
D. $14 \cdot 50$

II - SOLEX CARburettors

1. Characteristics :

a) Vehicles DV.

Carburettor types		34 PBIC	34 PBIC 2	34 PBIC 3	32 BIC	
Introduced		$\rightarrow 17 / 1968$	$\rightarrow 10 / 1968$	$\longmapsto 10 / 1968$	Taxi Option *	
Items \quad Key		90 $\left.\right\|_{26} 90-1$		9327		
Mark on choke lever				97		
Choke tube	K			22		
Main jet	Gg	13			142,5	125
Air correction jet	a	210	205		260 or AH	250 or AF
Emulsion tube ${ }^{\circ}$	s	19	130	130	25	
Idling jet	g			55	50	
Idling air jet	u	13		X		
Mixture screw (type)	W		53	standord		
Accelerator pump (type).				72	without	
Pump jet .	Gp			50	without	
Accelerator pump injector, low type	1			60	without	
Starting jet	Gs	1		145	145	
Nylon float (weight in g)	F		5,7	5,7	5,7	
Standard needle valve	P		, 7	1,7	1,7	
Progression holes		2ϕ	120	$2 \phi=120.1 \phi=140$	$2 \phi=115$	
Movable air correction jet for choke	Ga			6	6	
* Butterfly	limi	ed to 9.6 mm (etween butterfly	y edge and bore)		

b) I ehicles DE

Carburettor type 32 SDID 2		
Items	Primary choke	Secondary choke
Venturi diameter	24	26
Main jet (inverted type)	130	125
Air correction jet	155	150
Short diffuser	3.2	3.2
Progression holes	$2 \phi=100$	$2 \phi=100$
Idling jet	45	40
Idling air jet	0,80	0,80
Pump injector	45	
Econostat \rightarrow 3/1966		80
$\longmapsto 3 / 1966$		60
Nylon float	7.5 g	
Needle valve with spring, seat	1.7 g	

NOTE: Since February 1970 a certain number of DT vehicles have been fitted with SOLEX carburettors, 28 X 36 SFIF.

BASIC ADJUSTMENTS.

OBSERI ATIONS :

- The basic adjustments are to be carried out uhen the vehicle gives an uncomfortable ride or when the engine stalls frequently.
- They consist of six separate operations which must of necessity be carried out completely and in the order indicated.
- The engine must be hot and the vehicle must have run for at least several minutes, otherwise these adjustments will change with time.
- The basic adjustments must be carried out.with the greatest of care.

VEHICLES with HYDRAULIC

 GEARCHANGE.
I. ADJUSTING THE CLUTCH CLEARANCE.

1. Pre-adjustment:

NOTE : The engine must be hot. Any adjustment made with the engine cold may be incorrect when the engine is hot.
Run the engine at idling speed.
Put the starting handle extension into position. Unscrew the adjusting screw (1) of the clutch fork by fractions of a turn, until the starting handle extension just begins to turn but may be stopped by hand.

2. Adjustment :

Tighten the screw (1) by two turns.

II. CHECKING THE CLUTCH CLEARANCE.

3. Check that the release spring on the fork is in good order and is firmly fixed.
Reduce the pressure in the cylinder by means of the auxiliary clutch control lever below the dashboard.
Check that the fork is free.
If it is not free, recommence the clutch clearance adjustment, which has probably been overdone.

III. ADJUSTING THE IDLING SPEED.

NOTE : This adjustment must be carried out when the engine is hot.
4. Screw in fully, without forcing, the accelerated idling adjusting screw (4).
5. Turn the secondary butterfly stop screw (2) to obtain a speed of :

- 550 r.p.m. approx. (vehicles \longrightarrow 9/1968)
- 625 r.p.m. (vehicles \longmapsto - 1968)

6. Turn the mixture screw (3) in one direction or the other until the point of maximum speed is reached for the butterfly opening as above.
7. Slowly unscrew the stop screw (2) until the speed is between :

- 550 and 600 r.p.m. (vehicles $\longrightarrow 9 / 1968$)
-625 and 675 r.p.m. (vehicles $\longrightarrow 9 / 1968$)
Ensure that the H.P. pump does not charge while the tachometer is being read.

8. If the running is erratic, re-adjust the mixture screw (3) (do this very slowly).
NOTE : After each adjustment on the secondary butterfly adjusting screw (2) flip the throttle open slightly, with the manual clutch control in the engaged position, to ensure that the butterfly returns fully to the stop screw.

92338

NOTE: The use of an electric tachometer (2436-T), is essential for the following operations. This tachometer is connected to the outlet terminal (red sleeve of the coil).
The electric tachometer has to be checked periodically according to amount of use.
The electric tachometer must conform to the following standards :

- dial of large diameter graduated from 0 to 1500 r.p.m. max.
- needle steady when in use.

IV. ADJUSTING THE CLUTCH DRAG SPEED.

NOTE: This adjustment must be carried out with the engine hot, and the vehicle standing on a flat, horizontal surface.
9. Start up the engine, engage first gear and accelerate very slowly. Clutch drag should commence between :

- 700 and 750 r.p.m. (vehicles $\longrightarrow-1 / 1968$)
- 725 and 775 r.p.m. (vehicles \longmapsto - 1968)

10. If it does not, proceed as follows:

Stop the engine. Loosen the lock-nut (1) on the adjusting screw (2) of the centrifugal regulator. If the clutch "drags" at a speed less than 700 or 725 r.p.m., tighten the screw.
Unscrew the adjusting screw if the clutch drag begins at a speed greater than 750 or 775 r.p.m. Tighten the lock-nut (1).

V. ADJUSTING THE ACCELERATED IDLING.

NOTE : This adjustment must be carried out with the engine hot.
11. With the engine idling : unscrew the adjusting screw (3) for accelerated idling until the speed is between :
-875 and 925 r.p.m. (vehicles $\longrightarrow-19 / 1968$)
850 and 900 r.p.m. (vehicles $\longmapsto 9 / 1968$)
Ensure that the H.P. pump does not charge during the tachometer reading.

IV. ADJusting the clutch re-engagement CONTROL.

NOTE : This adjustment must be carried out on the road with the engine hot.
12. If the clutch re-engagement time is too short, unscrew the screw (4) (anti-clockwise). If the time is too long, tighten the screw (4).
If the boss " αn contacts its stop before the correct adjustment is obtained :

- Unscrew the grub screw inside boss " α ".
- Turn the ring (5) and position it so as to afford the maximum adjustment in both directions.
- Tighten the grub screw.

VEHICLES with MANUAL GEARCHANGE

VII. ADJUSTING THE IDLING SPEED. NOTE

This adjustment must be made with the engine hot.

Use of a tachometer is essential.
It must be exact and easy to read from 0 to 1500 r.p.m.

The reading is rendered incorrect during the time that the HP pump charges : wait until it has finished.
(It is possible to put the vehicle in the "low " position!.
13. Turn the throttle stop screw (1) to obtain a speed of 550 r.p.m. approximately.
14. At this setting, find the maximum speed by means of the mixture screw (2).
15. Unscrew the throttle stop screw (1) slowly until the engine speed is between:

- 550 and 600 r.p.m. Vehicles $\longrightarrow 10 / 1968$.
- 625 and 675 r.p.m. Vehicles $\longmapsto 10 / 1968$.

VEHICLES ALL TYPES.

VIII. ADJUSTING THE ACCELERATOR CONTROL.

16. Check the measurement " a "; it should be : $\alpha=135 \mathrm{~mm}$.
If it is not, move the hooking plate for the accelerator return springs to obtain the measurement :

$$
\mathrm{a}=135 \mathrm{~mm} .
$$

17. a) With the accelerator pedal held fully down, open the butterfly or butterflies to the maximum and check the measurement "b" between the parts (2) and (3).
nn This measurement should be $: \mathrm{b}=1-4 \mathrm{~mm}$.
b) If it it not, adjust the nut and the lock-nut (1) on the accelerator control rod to obtain the correct measurement.

ADJUSTING THE IDLING SPEED

IMPORTANT NOTE :

On no account must the throttle stop screws (2) and (3) of the primary and secondary throttle butterflies be altered, as these have been micrometer set by the manufacturer.

ADJUSTING THE IDLING SPEED (AND THE CO AND CO ${ }^{2}$ MIXTURES):

Idling adjustments must only be carried out on an engine haring the ralce rockers and ignition correctly adjusted, and a clean air filter.

1. Ensure that the primary and secondary choke butterflies close properly.
2. Loosen the pressure regulator screw.
3. Warm up the engine to bring the wil temperature from 70° to $80^{\circ} \mathrm{C}\left(158^{\circ}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$. Keep this temperature during the whole of the idling adjustment operations.
4. $O_{n}\|B\|$ vchicles, place the gear change selector in position " N " or " P ".
5. Operate the mixture screw (1) to obtain a normal running speed, according to the model of the vehicle :
a) I) I chicles all types (except D $B \mathrm{BW}$) : $650 \pm 25 \mathrm{rpm}$
b) DBI U ehicles
$825 \pm 25 \mathrm{rpm}$
6. Operate the rich mixture screw (4) to obtain (use a tachmometer for CO and CO^{2})::
a) $D .1-/) /-D / F$ V ehicles : Mixture in carbon monoxide (CO) : 2 to $3,6 \%$
b) $D P-D\}-D T-D V-D L F$ Vehicles
: Mixture in carbonic gas $\left(\mathrm{CO}^{2}\right)$: superior to 8%
: Mixture in carbon monoxide (CO) : 1.8 to 3.6%
: Mixture in carbonic gas $\left(\mathrm{CO}^{2}\right)$: superior to 8.7%
NOTE: These mixtures in CO and CO^{2} mușt be obtained with the enqine at the correct idling speed. If necessary, operate simultaneously on the mixture screws (1) and (4). Finally operate mixture screw (4). NOTE : The authorised CO and CO^{2} mixtures, correspond to an outside air temperarure of between 15 and $30^{\circ}\left(67^{\circ}\right.$ and $\left.86^{\circ} \mathrm{F}\right)$
7. On Vehicles with hydraulic qear change : Adjust idling screw (5) accelerate to bring the engine to a idling speed of $900 \pm 25 \mathrm{rpm}$.

DBW VEHICLES

ADJUSTING THE IDLING SPEED

NOTE

This adjustment should be carried out with the engine warm.

The use of a tachometer is indispensable. It should be accurate and easily readable between 0 and 1500 r.p.m.

Uhile reading the tachometer make sure that the H.P. pump is not working.

1. Put the selector lever in the " N " or " P " position.
2. Operate the butterfly stop screw (1) to obtain a speed of around 550 r.p.m.
3. For this adjustment find the fastest speed using the mixture screw (2).
4. Next slowly slacken the stop screw (1) then bring the engine speed to between :

800 and 8.50 r.p.m.

I. ADJUSTING THE PUMP OUTPUT

Manual 814-1

NOTE : This operation is to be carried out if it is noted that the petrol feed is not correct or after the replacement of a spacer, pushrod quide, cylinder block or engine.
It is not carried out if a pump alone has been replaced. This operation is done by determining the length of the push-rod to be fitted.
Push-rod are supplied in three different lengths:

- $48,06 \mathrm{~mm}$: one reference groove on the push-rod
$-48,57 \mathrm{~mm}$: two reference grooves on the push-rod
$-49,08 \mathrm{~mm}$: three reference grooves on the push-rod

1. Remove the pump

2. Fit plate A (3087-T assembly) on the pump assembly studs. Tighten the nuts (1) by 21 to $28 \mathrm{~m} \wedge \mathrm{~N}(2,2$ to $2,8 \mathrm{~m} . \mathrm{kg}$) (flat washer under nut) (16 to 20 ft .Ibs)

3. Check the length of the push-rod

a) First condition

Turn the engine over so as to bring the push-rod (2) to its outermost position. In this position the push-rod (2) must not stand proud of the outer face of plate A (at most it may be flush). Check by means of a straight-edge.
b) Second condition :

Turn the engine over so as to bring the fushrod to its innermost position.
Fit gauge B into plate A (3087-T assembly) When the end of the small diameter of the gauge bears upon the push-rod the larger diameter must not be inserted into the aperture in plate A.
c) Choose amongst the push-íds the one that fulfills these two conditions.
4. Remove assembly 3087-T.
5. Refit the pump

II CHECKING THE FUEL PRESSURE USING THE 4005-T TESTER (on vehicle).

III. CHECKING FOR LEAKS
(fuel pump removed)

1. Close the carburettor feed hole "h" with a plug.
Fit a rubber tube to the suction hole "g n.
2. Submerge the pump completely in a vessel containing clean petrol.

3 Through the tube connected to hole "gn. blow compressed air at a pressure of 100 to $300 \mathrm{~g} / \mathrm{cm}^{2}$ (1.4 to 4.2 psi).
4. To begin, some bubbling may occur, due to the action of the diaphragm.
Maintain the pressure for a few seconds. If bubbles of air escape via the hole for the control le ver at " $f n$, it means that the diaphragm is leaking and the lower body must be replaced.
If air bubbles escape between the contact faces of the upper body and the lower body at "en or round the securing screws at "dn it means that the joint faces are defective or that the screws are not sufficiently tight.

D.IE VEHICLES, ALL TYPES

1. CHARACTERISTICS OF THE FUEL PUMP

- Electric fuel pump
- Reference number BOSCH OF 525 H
- Output : 60-80 litres/hour (13 gal. 2 pt -17 gal. 5 pt (Imp.) / Hour)
- Regulated pressure : 4 bars (58 psi)
- Power : 40 watts (approx).

II CHARACTERISTICS OF THE FUEL FILTER

- Filter of the paper type
- Reference number : BOSCH, FJ 629 K
- Renewal : every $30,000 \mathrm{~km}$ (18,000 miles)

NOTE: On these vehicles the suction feed tube in the fuel tank is not fitted with a filter. Do not fit one.

III. RENEWING A FUEL FILTER

REMOVAL

1. Remove the double finishing panel under the R.H. sidemember.
2. Undo the clamps (1) and (2) and disconnect the pipes from the filter.

FITTING.

3. Offer up the filter, the arrow " a " positioned toward: the front of the vehicle.

Connect the pipes and tighten the clamps (1) and (2).
4. Fit the double finishing panel under the R.H. sidemember.

Distributar
r.p.m.

Distributor
r.p.m.

CENTRIFUGAL ADVANCE
C3 \bar{n}
$\stackrel{1}{N}$
0

VEHICLES ALL TYPES.

I. DISTRIBUTORS

$$
\text { DS } \longmapsto 10 / 1955 \longrightarrow 1 / 1959
$$

Distributor with two contact breakers
Adjust the synchronisation of-the breakers

- Condensers:
0.18 to $0.27 \mu \mathrm{~F}$

ID $\longrightarrow-12 / 1964$

- References: DUCELLIER 3491 A or SEV-MARCHAL N4C-FG/LB
- Force necessary to separate the bregker points.

$$
\text { SEV-MARCHAL } 850 \text { to } 1000 \mathrm{gm} .
$$

DUCELLIER 700 to 850 gm .

- Dwell angles of the contact-breakers.
SEV-MARCHAL
$59 \pm 2^{\circ}$

DUCELLIER
$57 \pm 2^{\circ}$

- Condenser 0,18 to $0,27 \mu \mathrm{~F}$.

DS $\longrightarrow 7 / 1959 \longrightarrow-1965$

- References : DUCELLIER 3944 A SEV MARCHAL N4-YG
$\xrightarrow[\text { - References : DUCELLIER 3941 B }]{\text { ID }}$ SEV-MARCHAL N41C-YG/LB
- Force necessary to separate the breaker points.
SEV-MARCHAL 850 to 1000 gm.
DUCELLIER 700 to 850 gm.
- Dwell angles of the contact-breakers.

SEV-MARCHAL $59 \pm 2^{\circ}$
DUCELLIER $57 \pm 2^{\circ}$

- Condenser $C, 18$ to $0,27 / / \mathrm{F}$.

LOW.PRESSURE OPERATED ADVANCE \qquad

C4

- Force necessary to separate the breaker points.
SEV-MARCHAL 850 to 1000 gm . DUCELLIER 700 to 850 gra.
- Dwell angles of the contact-breakers.

SEV-MARCHAL $59 \pm 2^{\circ}$
DUCELLIER
$57 \pm 2^{\circ}$

- Condenser 0,18 to $0,27 \mu \mathrm{~F}$.

Sistrit sor
 r.o.m.

CENTRIFUGAL ADVANCE

$\mathrm{DE} \longmapsto 9 / 1965 \longrightarrow 19 / 1966$

$$
\begin{aligned}
\text { References : } & \text { DUCELLIER } 3944 \text { A } \\
& \text { SEV-MARCHAL } 4 \cdot Y G
\end{aligned}
$$

- Force necessary to separate the breaker points.
SEV-MARCHAL 850 to 1000 gm DUCELLIER 700 to 750 gm .
- Dwell angles of the contact-breakers.

DX - DJ - DXF - DJF - $\longrightarrow 9 / 1905 \longrightarrow 10 / 1068$
DUCELLIER 4155 B SEV - MARCHAL A 147

SEV - MARCHAL	850 a 1000 g
DUCELLIER	700 a 850 g
SEV - MARCHAL	$59 \pm 2^{\circ}$
DUCELLIER	57 ± 2
Condenser	0,18 à $0,27 \mu \mathrm{~F}$

DY - DL - DYF - DLF $\longrightarrow 9 / 1965 \longrightarrow 19 / 1968$
DUCELLIER 4169 A
SEV - MARCHAL A 158

SEV - MARCHAL	850 à 1000 g
DUCELLIER	700 a 850 g
SEV - MARCHAI	$59^{\circ} \pm 2^{\circ}$
DUCELLIER	$57^{\circ} \pm 2^{\circ}$
Condenser	0,18 a $0,27 \mu \mathrm{~F}$

C 8

SEV - MARCHAL	850 a 1000 g
DUCELLIER	700 a 850 g
SEV - MARCHAL	.. 59. $\pm 2^{\circ}$
DUCELLIER	57.2
Condenser	0,18 a $0,27 \mu \mathrm{~F}$

CENTRIFUGAL ADVANCE

C 10

DX - DJ-DXF - DJF $\longmapsto 10 / 1968 \longrightarrow 19 / 1972$
DP $\longmapsto 9 / 1972$

- Références : DUCELLIER 4253 A et 4253 B SEV MAFCHAL A 222
 tors are filled with a cassette. The curved marhs and adjustments are identical to the pereded distrihmors.
- Force neçessary to separate the breaker points :
SEV - MARCHAL
850 à 1000 g DUCELLIER.. 700 à 850 g
- Dwell angles of the contact-breakers.

SEV - MARCHAL	59°	$\pm 2^{\circ}$
DUCELLIER	57°	$\pm 2^{\circ}$

- Condenser :

91969	0,18 à 0,27 $\mu \mathrm{F}$
--9/1969	0,25 a $0.30 \mu \mathrm{~F}$

DY - DL - DYF - DLF - DT - DV

$\longmapsto 10 / 1968 \longrightarrow 15 / 1969$

- References : DUCELLIER 4254 A
 tars are filled with a rassefle. The curved marhs and adjustmertis are identical to the precoded diveributers.
- F'orce necessary to separate the breaker points :

SEV - MARCHAL 850 à 1000 g
DUCELLIER ... 700 a 850 g

- Dwell angles of the contact-breakers.
SEV - MARCHAL .. $\pm 2^{\circ}$
DUCELLIER
- Condenser: 0,18 à 0,27 $\mu \mathrm{F}$

DY - DL - DYF - DLF - DT $\longmapsto 5 / 1969$
DV $\longmapsto 9 / 1972$

- References : DUCELLIER 4291 A et 4291 B SEV - MARCHAL A 251

SEV - MARCHAL	850 a 1000 g
DUCELLIER	700 a 850 g
SEV-MARCHAL	$59 \pm 2^{\circ}$
DUCELLIER	57 ± 2.

Condenser

——9190り.
$0,25 \pi 0,30 \mu \mathrm{~F}$

DV $\longmapsto 5 i 1960 \longrightarrow 1$ - 1072
 DX - DX.BH - DJ $\longmapsto 111972$

-References: DUCELLIER 4254 B 4254 C SEV-MARCHAL A 252

NOTE : Since Pebruary 1972. sEV- W The $1 /$ 1/ distributors are filled mith a rasselle. The rariod mathos and adjusiments are identical to the preceded dismibutors.

- Force necessary to separate the breaker points :

SEV-MARCHAL
.850 a 1000 g
DUCELLIER
700 a 850 g

- Dwell angles of the contact-breakers.

SEV-MARCHAL $59^{\circ} \pm 2^{\circ}$
DUCELLIER $57^{\circ} \pm 2^{\prime \prime}$

- Condenser :

RECAPITULATORY TABLE OF ADVANCED CURVES

II. SPARKING PLUGS.

For the hranai and ypes of phass recommended refer to the appropriate technical bulletins which appour periolicall?.
III. COILS
$\longrightarrow 3$ lot. SEV-MARCHAL 3 H
or DUCELLIER 2070 B
$\longmapsto 9 / 1969:$ SEV-MARCHAL E 44910312
or DUCELLIER 2777 B

IMPORTANT NOTE: The new ignition coils (with external hallast-resistance) mast of aecessity be fitted with the ignition condenseis of 0,25 to $0,30,8$.

1. PRE.S ETTING OF STATIC TIMING

VEHICLES ALL TYPES $\longrightarrow \quad$ T/1971

1. Check the gap between the contact breaker points (cam angle).
2. Find the position of static timing on the engine :
a) Release the pressure in the clutch cylinder. To do this operate the manual clutch control (Vehicles with hyd. gearchange)
b) Bring the first cylinder to the beginning of the compression stroke, noting the position of the distributor rotor. Insert a timing pin " A " of diameter 6 mm into the hole provided in the clutch bell housing (under the generator).

Slowly turn the engine until the timing pin enters the slot in the flywheel. In this position the engine is at the firing point. (First cylinder) i.e. 12° before T.D.C.

NOTE: On a vehicle fitted with a 5 -speed gearbox raise the front, L.H. side so that the wheel is off the ground. Engage 5 th. gear and turn the front, L.H. wheel in order to turn the engine.

WITHDRAW THE TIMING PIN.

3. Adjust the distributor :

Connect a test-lamp to the condenser terminal and to earth. Switch the ignjtion on.

Loosen the screw (2) securing the distributor clamp.

Place the spark control in the position "SUP" if it is marked and tighten the securing nut (1)

Slowly turn the body of the distributor in an anticlockwise direction. Stop the moment the lamp lights, which is the point at which the contacts just open.

Tighten the screw (2) securing the distributor clamp.

Switch the ignition off.
Put the manual clutch control in the drive position (vehicles with hydraulic gearchange).

IMPORTANT:

The pre-setting of static timing using a test lamp is only intended for starting the engine. In no case will it suffice for the distributor timing (firing point) which must be carried out with a strobe lamp (see setting of static timing).

T.T. VEHICLES
 \longmapsto 7/1971

II. PRE-SETTING OF STATIC TIMING

NOTE; On a vehicle fitted with a 5 -speed gearbox, raise the front, L.H. side of the vehicle so that the wheels are off the ground. Engage 5th. gear and turn the front L.H. wheel so as to turn the engine.

As from 1st July 1971 the engine flywheels have been modified:

The notch in the engine flywheel for the pre-setting of the static timing corresponds to the top dead centre of cylinders 1 and 4 when the timing pin in the clutch housing is engaged in this notoh.

A gauge A is fixed to the water pump (see diagram opposite).

One graduation on the gauge corresponds to one contact breaker degree.

Pre-setting of static timing :

1. Check the gap between the contact breaker points (cam angle).
2. Bring the first cylinder piston to the end of the compression stroke, noting the position of the distributor rotor.
3. Insert the timing pin $B(\phi=6 \mathrm{~mm})$ into the hole in the clutch housing and slowly turn the engine until the pin enters the flywheel notch. At this point the first cylinder position is at top dead centre, end of compression stroke.

4. WITHDRAW THE TIMING PIN

5. Make sure that the mark on the drive pulley (1) (yellow mark) is situated opposite the zero point on the gauge. If necessary make this mark (in cases where the drive pulley is being removed).
6. Turn the distributor so that the contact breaker points just begin to open (use a test lamp).

IMPORTANT :

The pre-setting of static timing using a test lamp is only intended for starting the engine. In no case will it suffice for the distributor timing (firing point) which must be carried out with a strobe lamp (see setting of static timing).

"DECEL" circuit

11. II. I chiches released since september 1972.

To comply with anii-pollution standards, a supple mentary intake of air is accomplished when releasing the accelerator (butterfly air intake valve closed). During a period of the de-acceleration stage, there is no injection cut-out like on the preceded models. Supplementary air intake is carried out by the PILOT valve, having a favourable sweeping effect to burn the exhaust gases. Consequently, during the de-acceleration period, the injection is held, and the fuel injected is proportioned according to the quantity of air intake accepted by the "DECEL system" (PILOT valve) to allow a perfect combustable mixture.

NOTE: O_{n} II.IE rehicles, the anti-pollution circuit is set up by the idling system being accelerated. On models released since Septemier 1972 as on DJ.IE models there is no more injection cut-out. The supplementary dir intake system is cut-off when releasing the accelerator and pressing on the foot brake.

17 Checking the anti-pollution circuit "DECEL"

Disconnect the tube " a " from the pilot valve (2). Bring the engine speed to about $2500-3000 \mathrm{rpm}$, and release the accelerator.

Using the index finger, check to see if the depression (suction) can be felt. If not, check the pipes " b " and " c " and there connection. If these are in good condition, the PILOT valve must be faulty, replace it.

DIAGRAM DJ.IE - 511-00
 ELECTRONIC FUEL INJECTION SYSTEM
 DJ.IE Vehicles produced since April 1971

(See Operation DJ.IE - 511-00)

D.IE VEHICLES (All Types) produced since April 1971

The wiring diagrams DX.IE 511-00 and DJ.IE 511-00 for these vehicles differ from the wiring diagram D.IE 511-00 only in the following points :

1) The harness is in two parts. A 12 -way terminal block (20) connects the two parts.
2) The addition of an air temperature sensor (21) (modified control unit).
3) The starter motor and impulsion relays are no longer fitted on the DJ.IE models.
4) The markings of the various leads have been partly modified. Self-adhesive numbers replace the colour markings.

The check fot the electronic fuel injection system griven in this section corresponds to the wiring diagram D.IE 511-00. To apply this section to the new wiring diagrams DX.IE 511-00 and DJ.IE 511-00, it must be remembered that the wires correspond as follows.

NOTE: The figures in brackets show the markings of the leads of the terminal block (20).

IV. ADJUSTING THE STATIC TIMING
 (With a stroboscopic lan.p)

1. If the distributor has been removed, pre-set it so that the engine can run (see same operation § I)
2. Connect the tachometer.
3. Fit instrument 3078 - T onto the alternator bar (3) so that the gauge is level with the edge of the drive pulley (2).
4. Put the engine at the static ignition setting inserting the timing pin into its hole. 1
5. Paint a thin white line on the drive pulley (2) opposite the "zeron mark on the gauge (see fig. 3 page 3).

WITHDRAW THE TIMING PIN.

6. Power the stroboscopic lamp and connect its high voltage lead to the plug lead cylinder $\mathrm{n}^{\circ} 1$.
7. Light up the mark with the stroboscopic lamp.

The mark seems to move when the engine speed increases :

- Let the engine run at the speed indicated in column A of the table on page 4.
- The mark should be opposite the graduation corresponding to the value given in column C of the table on page 4 (each graduation on the gauge represents 2° distributor: see fig. 4 page 3)

8. If it is not, unscrew the screw on the distributor clamp and turn the distributor so that the mark is in line with the correct section (the ignition advance angle increases when the distributor turns anti-clockwise).
9. Tighten the distributor clamp screw to $3 \mathrm{~m} / \mathrm{NN}(0,3 \mathrm{~m}, \mathrm{~kg})(\hat{2} .16 \mathrm{ft} . \mathrm{Ibs})$
10. Switch off the ignition.
11. Remove the stroboscopic lamp, instrument $3078-\mathrm{T}$ and the tachometer.

12. If the distributor has been removed preset it so that the engine can run (see same operation § I)
13. Connect the tachometer.
14. Fit instrument 3078 - T onto the alternator bar (4) so that the gauge is level with the edge of the drive pulley
15. Put the engine at the initial static setting by inserting the timing pin into its hole.
16. Paint a small white line on the drive pulley (3) opposite the mark " O " on the gauge (see fig. 3 page 3).

WITHDRAII THE TIMING PIN.

6. Feed the stroboscopic lamp and connect its high voltage lead to the plug lead of cylinder no 1 . Adjust the dephaser (1) to "zero".
7. Let the engine run at the speed indicated in column A of the table on page 4.
8. Light up the mark with the stroboscopic lamp (2).
9. Using the dephaser control bring the mark on the drive pulley (3) opposite the "zeron mark on the gauge. - Take a reading from the dephaser dial. The result shown by the needle should correspond to the ignition advance angle given in column C of the table on page 4.
10. If it does not, unscrew the screw on the distributor clamp and turn the distributor until the mark gives the correct result. (The ignition advance angle increases when the distributor is turned anti-clockwise). ,
11. Tighten the distributor clamp screw to $3 \mathrm{~m} \Lambda \mathrm{~N}(0,3 \mathrm{~m} . \mathrm{kg}$.) ($2.16 \mathrm{ft} . \mathrm{ljs}$) Switch off the ignition
12. Remove the stroboscopic lamp, instrument $3078-\mathrm{T}$ and the tachometer.

VI - ADJUSTING THE STATIC TIMING

VEHICLES ALL TYPES
 $\longmapsto \quad 7 / 1971$

1. If the distributor has been removed, pre-set it so that the engine can run (see same operation,§ II).
2. Bring the piston of the first cylinder to TDC (see same operation, § II).
3. Make sure that the mark on the drive pulley (1) (yellow mark) is situated opposite the "zero" mark of the gauge " S ". If necessary, make this mark.
4. Use the table on page 4 to read off, for the type of vehicle in question, the engine speed (column A) and the corresponding total advance in crankshaft degrees (column B).
5. Convert this value into distributor degrees:
distributor advance $=\frac{\text { crankshaft advance }}{2} \quad$ E.g. for a DV : distributor advance $=\frac{24^{\circ}}{12}=12^{\circ}$
a) When using a strobe lamp:

- Let the engine run at the speed indicated (column A).
- The drive pulley mark (illuminated by the strobe lamp) should be opposite the division corresponding to the value just calculated. If this is not the case, alter the angular position of the distributor. During the adjusting operation, check and, if necessary, correct the engine speed.
b) When using a strobe lamp with a dephaser:
- Let the engine run at the speed indicated (column A).
- Operate the dephaser control to keep the drive pulley mark (illuminated by the strobe lamp) opposite the "zero" mark of the gauge.
- Read the value of the advance on the dephaser dial and make sure that it corresponds to the one expected. If this is not the case, alter the angular position of the distributor. During the adjusting operation, check and, if necessary, correct the engine speed.

NOTE :

The dephaser dials normally have two scales :

- one indicating crankshaft degrees,
- the other indicating distributor degrees.

VII. TEST BENCH CHECK OF A DISTRIBUTOR.

The curves and characteristics of the different types of distributor are shown in operation D. 210-00.

1. Check the condition of the contact breaker points and adjust the contact gap.
2. Position the distributor on the test bench and connect the bench coil negative to the primary terminal of the distributor.
3. Check the insulation of the secondary circuit, Adjust the spark gaps to 7 mm .
Connect the secondary terminal of the coil to the central contact of the distributor and the spark plug leads to the contact breakers.
Allow the distributor to turn at 1000 r.p.m. for fifteen minutes. There must be no misfiring.
4. Check the spark grouping :

The angular difference must not exceed $l^{\circ} 30^{\prime}$ max. at all speeds (max. distributor speed : 3000 r.p.m.).
At each opening point the max, variation of the spark positions must not be more than $1^{\circ} 30^{\prime}$.
5. Check the dwell angles of the contact breakers.

DUCELLIER distributor $57 \pm 2^{\circ}$
SEV-MARCHAL distributor $59 \pm 2^{\circ}$
6. Check the adjustment of the automatic ignition advance curve.

The actual curve must be between the minimum and maximum curves on the graph.
NOTE : a) It is possible to modify the tension of the flyweight springs by bending the spring anchor clips.
b) If there are sparks at any other than the four normal positions the cam follower contact is bouncing. Check the force necessary to separate the points. ().
7. Check the primary circuit insulation.

With the condenser removed bring the temperature of the distributor to $60^{\circ}\left(140^{\circ} \mathrm{F}\right)$. When the contact points are open apply 110 volts alternating current between the insulated positive terminal and earth, inserting a lamp in series. Maintain this voltage for 1 min . The lamp must not light up. If it does the insulation is defective.
8. Check the condenser.
a) Check the insulation:

Apply 110 volts alternating current between the condenser and its casing for 1 min . Insert a mains lamp in series in the circuit. If the lamp lights the insulation is defective.
b) Check the capacities :

Use a capacitance - meter.
r

VIII. CLEANING AND ADJUSTING THE SPARK PLUGS.

NOTE : This operation is necessary after prolonged town driving at low speed. Such use of the vehicle induces considerable fouling of the plugs.
9. Eliminate all lead and oil deposits on the insulator and electrodes by using a hardwood spatula. Do not use any metallic object.
10. Clean the plugs in petrol and blow out with compressed air.
11. Clean the plugs with α sand -blasting machine, supplied with compressed air at 6 bars max. (85 p.s.i.)

Blow out with an air jet at a maximum pressure of 4 bars ($56 \mathrm{p}, \mathrm{s}, \mathrm{i}$.) to remove the sand without forcing any between the insulator and the body of the plug.

> IMPORTANT NOTE : Incomplete cleaning of the plags after sand-blasting can cause rapid ensine wear. It is therefore essential to eliminate all traces of sand after this operation.
12. Remove all sand that may be left on the base of the insulator by scraping with a very hard wood spatula.
13. Maintaining the sand-blasting machine.
a) Use only the sand supplied by the manufacturer of the machine.
b) Store the sand in a very dry place.
c) Renew the sand in the machine after cleaning about 100 plugs.
14. Adjust the electrode gaps to $0,60 \mathrm{~mm}-0.70 \mathrm{~mm}$ (0.024 to 0.028 in)

IX - CHECKING AN IGNITION COIL

1. Check the insulation of the primary circuit.

Check the insulation of the primary circuit using an ohmmeter connected between the primary terminal marked (\times or BAT) and the housing. Resistance must be infinite

This check may also be carried out with a lamp supplied with 110 volts, connected as the ohmmeter. The lamp must not light.
2. Check the secondary circuit.

Place the coil (with or without external resistan$c e)$ on a test bench, with a shunted spark gap (50 K ohms) adjusted as shown opposite.
a) Run the distributor at 500 r.p.m.

With the spark gap at 15 mm min. slowly bring the moving contact A closer and lock it when the first spark appears. At this moment the spark gap must be "d".

Repeat this test at least three times and take the average of the gaps measured. The average gap must be at minimum 9 mm . (0,35 ins)
b) Run the distributor at 2000 r.p.m.

Repeat the test shown in § 2α.
The average gap must be at minimum 4 mm . (0,16 ins)

IMPORTANT NOTE :

Since Seplember 1969 the new ignition coil with external resistance is fitted together with a new ignition condenser with increased capacity : 0,25 to $0,30 \mu \mathrm{~F}$ instead of 0,18 to $0,27 \mu \mathrm{~F}$.
N.B. : The coil should be capable of carrying 12 volts for ten hours.

D. IE VEHICLESALL TYPES
 $\rightarrow 1 / 7971$

1. Check the contact-breaker setting.
a) Using a set of feeler gauges.

Remove the distributor head and check that the gap at the contact breaker points is $0,40 \pm 0,05 \mathrm{~mm}$ (0,014 to $0,018 \mathrm{in}$) if not, adjust it to this.
b) Using a dwellmeter.

With the engine running, the dwell reading should be $56 \% \pm 3$ if it is not remove the distributor head, turn distributor by means of the starter motor and adjust the contact breaker gap.
c) Using a cam-angle (dwell-angle) tester or an os cilloscope.
With the engine running the closing angles of the breaker should be $50^{\circ} \pm 3^{\circ}$. If it is not, remove the distributor head turn the distributor by means of the starter motor and adjust the contact breaker. gap.
2. To find the position of initial advance on the engine.
a) Bring $n^{\circ} 1$ cylinder to the end of its compression stroke.
NOTE: On vehicles fitted with a 5 -speed gearbox place the front L.H. side of the car on supports, so that the wheel is clear of the ground engage 5 th. gear and use the L.H. wheel to turn the engine.
b) Insert a 6 mm diameter locating pin " A " into the hole (situated under the alternator) provided in the clutch bell-housing
To do this:
Gently turn the engine until pin falls into the flywheel slot. In this position the engine is at firing point ($\mathrm{n}^{\circ} 1$ cylinder) i.e. $8^{\circ} 30^{\prime}$ before T.D.C.
c) WITHDRAW THE LOCATING PIN.
3. Adjust the distributor to the static setting.

Connect a warning lamp to the terminal " - " or "RUP"
of the ignition coil and to earth. Switch on the
ignition.
Slacken the securing screw (1) of the distributor clamp plate,
Turn the advance control (2) to the end of the slot in the direction of the arrow and tighten the securing nut (3).
Slowly turn the distributor body in an anti-clock wise direction. Stop as soon as the lamp lights which is the point at which the contacts open.
Tighten the screw (1) securing the distributor clamp plate to $3 \mathrm{~m} \backslash \mathrm{~N}(0,3 \mathrm{~m} \cdot \mathrm{~kg}) .(2,16 \mathrm{ft} . \mathrm{lbs})$.
Switch off the ignition.

IMPORTANT :

The pre-setting of the static timing using a check lamp allows only the starting of the engine, under no circumstances is it sufficient for setting the distributor (static timing). This must be done using a strobe lamp (see corresponding operation).

II. PRE-SETTING THE STATIC TIMING

NOTE : Make sure that the distributor is properly positioned, the connector of the triggering contact must be on the opposite side to the engine.
Since lst. July 1971, the engines have been modified.

- The notch of the enqine flywheel, intended for the presetting of the static timing, corresponds to toc of pistons 1 and 4 when the static timing pin engages in this notch on being inserted into the clutch casing. A graduated scale α is fixed to the water pump (see illustration opposite)
1 graduation of the scale corresponds to 10 of the distributor.

Pre-setting of the static timing.

1. Check the contact-breaker gap (cam-angle).
2. Bring the piston of cylinder 1 to the end of its compression stroke whilst keeping the distributor rotor in position.
NOTE: On vehicles equipped with five speed gearbox, place the front L.H. side of the vehicle on supports so that the front L.H. wheel is clear of the ground. Engage 5 th. gear and use the wheel to turn the engine.
3. Insert the pin $\mathrm{B}(\phi=6 \mathrm{~mm})$ in the hole in the clutch casing and turn the engine slowly until the pin enters the notch of the flywheel. At this moment the piston of cylinder 1 is at top dead centre, the end of its compression stroke.

4. WITHDRAW THE PIN.

5. Make sure that the existing mark on the drive pulley (1) (yellow mark) is positioned opposite the zero graduation on the scale. If necessary, make this mark (if the drive pulley is removed).
6. Turn the distributor to the point where the contactbreakers start to open (use check lamp)

IMPORTANT :

The pre-setting of the static timing using a check lamp permits only the starting of the engine, under no circumstances is it sufficient for the setting of the distributor (static timing) which must be done using a strobe lamp (see relevant operation).

III. TEST BENCH CHECK OF A DISTRIBUTOR

D. 21-68

CENTRIFUGAL ADVANCE CURVE FOR BOSCH ZV 11/7A 3 A DISTRIBUTOR

1. Check the condition of the contact breaker points and adjust their gap to $0,40 \pm 00^{05} \mathrm{~mm}(0,016$ to 0,018 in $)$
2. Place the distributor in position on the test bench and connect the test bench coil negative to the distributor primary terminal.

3. Check the insulation of the secandary circuit.

Adjust the spark gaps to 7 mm . $(0.27 \mathrm{ins})$
Connect the coil secondary terminal to the distributor central terminal and the spark plug leads to the spark gaps Turn the distributor at $1000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. for 15 minutes there should be no misfiring at the spark gaps.

4. Check the spark grouping.

The angular difference must not, exceed 1° max. at all speeds. (max. distributor speed 3000 r.p.m.)
At each opening point the maximum variation of the sparking positions must not exceed 1°.

5. Check the dwell angles of the contact breaker.

The dwell angle must be $50^{\circ} \pm 3^{\circ}$.

6. Check the adiustment of the centrifugal advance curve:

The actual curve must be between the min. and max. curves on the graph.

NOTE:
If there are sparks at any other than the four normal positions for speeds equal to or lower than 3200 r.p.m, the cam follower contact is bouncing.
Replace the contact breaker.

7. Check the primary circuit insulation.

Bring the temperature of the distributor, with the condenser removed to $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. With the contact open apply 110 volts alternating current between the positive terminal and earth inserting a mains lamp in series. Maintain this voltage for 1 min . The lamp should not light, if it does, the insulation is. defective.
8. Check the condenser.

Checking the capacities:
Use a capacitance-meter. The capacitance must be between 0,15 and $0,25 u \mathrm{~F}$.

D.IE VEHICLES ALL TYPES

$\longrightarrow 7 / 1971$

IV. ADJUSTING THE STATIC TIMING

(With a stroboscopic lamp)

NOTE : The distributor must be timed, with the engine running at 1800 r.p.m.. Ignition advance must be 22° (crankshaft degrees in relation to T.D.C.)

1. If the distributor has been removed, set it at the static setting so that the engine can run (see same operation chap. 1).
2. Connect the tachometer (4)
3. Fit the bracket of the gauge 3078 - T onto the alternator bar (2) so that the gauge is level with the edge of the drive pulley) 3) (each division of the gauge represents 2° distributor).
4. When the engine is at the static setting, point a thin white line on the drive pulley (3) opposite the "O" mark on the gauge.

WITHDRAW THE TIMING PIN.

5. Connect the stroboscopic lamp (1) to the voltage source feeding the instrument, and to the plug lead of n° I cylinder.

IMPORTANT NOTE : The secondary voltage of the first cylinder's ignition circuit must be picked up at the distributor head.

6. Light up the mark with the stroboscopic lamp. The mark seems to move when the engine speed increases. When the engine runs at 1800 ± 50 r.p.m. the mark should correspond to $6^{\circ} 45^{\prime}$ distributor ($31 / 3$ divisions approx.)
7. If it does not, unscrew the screw on the distributor clamps and turn the distributor so that the mark corresponds to the correct section (the ignition advance angle increases when the distributor is turned anti-clockwise).
8. Tighten the distributor clamp screw to $3 \mathrm{~m} \Lambda \mathrm{~N}(0,3 \mathrm{~m} . \mathrm{kg})(2.16 \mathrm{ft} . \mathrm{Ibs})$
9. Switch off the ignition.
10. Remove the stroboscopic lamp (1) graduated scale 3078-T and tachometer (4).

V. ADJUSTING THE STATIC TIMING
(With a stroboscopic lamp with dephaser)

D. IE VEHICLES - ALL TYPES

$\longrightarrow 17 / 1971$

NOTE : The distributor must be timed engine running at 1800 r.p.m.
Ignition advance must be 22° (crankshaft degrees in relation T.D.C.)

1. If the distributor has been removed set it at the static setting so that the engine can run (see same operation chap. 1).
2. Connect the tachometer.
3. Fit the bracket of graduated scale 3078 - T on to the alternator bar (2) so that the scale is level with the edge of the drive pulley (3).
4. When the engine is at the static setting, point a thin white line on the drive pulley (3) opposite the timing pointer mark.

WITHDRAW THE TIMING PIN.

5. Connect the instrument to the voltage source and to the plug lead of $n^{\circ} 1$ cylinder. Adjust the dephaser (1) to "zero".
6. Run the engine at $1800 \pm 50 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m} \cdot$.
7. Light up the marks with the stroboscopic lamp (4).
8. Using the dephaser control, bring the mark on the drive pulley (3) in line with the timing pointer mark. With the engine running at 1800 ± 50 r.p.m. the division shown by the needle on the dephaser scale corresponds to the ignition advance angle. If the setting is correct, it should read $6^{\circ} 45^{\prime}$ distributor.
9. If the reading varies from this loosen the distributor clamp and turn the latter so as to bring the mark on the drive pulley (3) into line with the mark of timing pointer 3078-T. The distributor advance angle increases as the distributor is turned anticlockwise.
10. Tighten the clamp of the distributor to $3 \mathrm{~m} \Lambda \mathrm{~N}(0.3 \mathrm{~m} . \mathrm{kg} 2.16 \mathrm{ft} . \mathrm{lbs})$. Switch off the ignition.
11. Remove the strobe lamp (4) and the dephaser (1), the graduated scale 3978-T, and the tachometer.

D. IE VEHICLES ALL TYPES

VI. ADJUSTING THE STATIC TIMING

1. If the distributor has been removed, pre-set it so that the engine can turn over (see this operation, chap. II)
2. Bring the piston of cylinder I to TDC (see same operation, chap. II)
3. Make sure that the mark on the drive pulley (1) (yellow mark) is opposite the zero graduation of the scale " S^{\prime}. If necessary, make this mark.
4. The distributor advance should be 22° (crankshaft degrees in relation to TDC) with the engine turning at 1800 r.p.m.
5. Convert this value into distributor degrees :
distributor advance $=\frac{\text { crankshaft advance }}{2} \quad$ i.e. distributor advance $=\frac{22^{\circ}}{2}=11^{\circ}$

a) Using a strobe lamp :

- Turn the engine at 1800 r.p.m.
- The mark on the drive pulley (lit by the strobe lamp) should be opposite the division corresponding to the value previously calculated. If this not the case, adjust the angular position of the distributor. During the operation, check and correct the engine speed. If necessary.
b) Using strobe lamp with dephaser:
- Turn the engine at 1800 r.p.m.
- Adjust the dephaser control to keep the mark on the drive pulley (lit by the strobe lamp) opposite the zero mark on the graduated sector.
- Read the distributor advance on the dephaser dial, and make sure it is correct. If this is not the case adjust the angular position of the distributor. During the operation check and correct the engine speed if necessary.

NOTE :

The dial of a dephaser, usually has 2 readings scales.

- one shows crankshaft degrees
- the other shows distributor degrees.

CHECKING THE OIL PRESSURE

CHECKING

1. Run the engine until the oil temperature is about $60^{\circ} \mathrm{C}$

Stop the engine
2. Remove the lubrication screw from the cylinder head.
Connect a pressure gauge graduated from 0 to 10 bars ($0-150 \mathrm{PSI}$).
Link this to the engine by pressure feed pipe using the union MR. 630-56/1
3. Connect a tachometer to the coil then let the engine run at 2000 r. p.m. (electric rev.counter 2436-T)
4. Read the pressure on the gauqe. It should be 3.8 bars min. (54PSI)
5. Stop the engine, remove the pressure gauge and refit the lubrication screw with its copper gasket.
6. Remove the tachometer

NOTE: If the pressure is incorrect the oil pump must be removed and reconditioned.

VEHICLES ALL TYPES

CHECKING A THERMOSTATIC REGULATOR

-3 0 0 0 \vdots 1	Reference of requlators	Date	Types of vehicles *	Start of valve opening
	V. 1743	$\rightarrow 10190$	DX A.T. (except BW)DJ A.T. DY A.T.	${ }^{78}{ }_{-3}{ }^{0}{ }^{\circ} \mathrm{C}\left(167-172.4{ }^{\circ} \mathrm{F}\right)$
	CL. 35-3800	$\rightarrow 101972$	DV-DT-DL	$75^{\circ} \pm 1^{\circ} \mathrm{C}\left(165,2-168,8^{\circ} \mathrm{F}\right)$
$\underset{\underset{Z}{2}}{\underset{Z}{2}}$	V. 28	$\begin{array}{ll} \mapsto & 3: 1972 \\ \rightarrow & 10 / 1972 \end{array}$	DX BW	$83{ }_{-3}^{0} \mathrm{C}(181.4-183.9 \mathrm{~F})$ or
号	5950	$\mapsto \quad 10: 1972$	DY	$79 \pm 1.5^{\circ} \mathrm{C}\left(172.4-175.2^{\circ} \mathrm{F}\right)$
		$\longmapsto \quad 101972$	DX A.T. and DJ A.T.	$79 \pm 1,5^{\circ} \mathrm{C}\left(172,4-175,2^{\circ} \mathrm{F}\right)$
	V. 28 - Ref. 6153	$\mapsto \quad 10: 1972$	$\begin{gathered} \text { DT-DLF-DV } \\ \text { DP } \end{gathered}$	$79 \pm 1.5^{\circ} \mathrm{C}\left(172,4-175,2^{\circ} \mathrm{F}\right)$

Checking:

Immerse the requlator in water and warm up progressively.
The regulator valve must start to open the temperature indicated on the above table for each type of vehicle. .

Replace the apparatus if it does not satisfy the above conditions.

[^1]

1280

1. ALIGNMENT OF THE PULLEYS

NOTE: The adjustments are made starting from the water pump pulley which is fixed on its spindle.

1. Adjustment of the drive pulley :

Place tool 3082-T, or $3085-\mathrm{T}$, in one of the grooves of the water pump pulley. The rod must centralise in the corresponding groove of the drive pulley.

Decrease or increase the thickness of the adjusting washers placed behind the pulley in order to obtain correct alignment.

2 Adjustment of the alternator or dynamo pulley :

Place tool 3082-T, or 3085-T, in one of the grooves of the water pump pulley. The rod must centralise in the corresponding groove of the dynamo pulley or alternator pulley.
If not decrease or increase the thicinness of the adjusting washers placed behind the alternator or dynamo puiley.

3 Adjustment of the high pressure pump pulley :

Place tool 3082 T , or $3085-\mathrm{T}$ in the second or the third groove of the high pressure pump pulley. The rod must centralise in the corresponding groove of the drive pulley.

Decrease or increase the thickness of the packing pieces between the high pressure pump and the fixing boss of the pump on the clutch housing.

4 Adjustment of the centrifugal regulator pulley. :

Place tool 3082-T, or $3085-\mathrm{T}$ in the groove of the requlator pulley. The rod must centralise in the first groove of the high pressure pump pulley.

Decrease or increase the thickness of the packing pieces at (a) to obtain correct alignment.

Then modify the packing piece at (b) sc that before tightening there is a maximum clearance of 1 mm between the support clip and the housing.

Tighten the securing nut, which will take up this clearance.

II ADJUSTMENT OF BELT TENSIONS

5 Tension of high pressure pump belts :
Unscrew the nuts securing the tie-rods (1) and (2), and the pump securing bolf.

Tension the belts using a lever (lever MR. 630-66 11 a). Lever on the clutch cylinder and and on the pump body.

Exert an effort of 5 kg . (11 lbs).) on the end of the lever (spring balance) which will correspond to a tension of 40 kg . (88 Ibs) on the belt.

Keeping the belts in tension, tighten the nuts securing the pumpretaining bolt and the tie rods (1) and (2).

II. ADJUSTMENT OF BEL.T TENSIONS

5 Tension of high pressure pump belts :
Unscrew the nuts securing the tie-rods (1) and (2), and the pump securing bolf.

Tension the belts using a lever (lever MR. 630-66/11 a). Lever on the clutch cylinder and and on the pump body.

Exert an effort of 5 kg . (11 Ibs).) on the end of the lever (spring balance) which will correspond to a tension of 40 kg . (88 Ibs) on the belt.

Keeping the belts in tension, tighten the nuts securing the pumpretaining bolt and the tie rods (1) and (2).

1306

6. Tension of the centrifugal regulator belt. (Vehicles with hydraulic gear change only)

Unscrew :

- the clip (1)
- the tie-rod (2)
- the mounting spindle (3)

Tension the belt using the hooked tool MR, 630-66/11b.
This hook passes round the regulator body behind the mechanical part. Exert an effort of 25 to 30 kg . upwards (use a spring balance) (55 to 66 Ibs .)

Keep the belt in tension and tighten:

- the tie-rod (2)
- the mounting spindle (3)
- the clip (1)

7. Tension of the alternator or dynamo belts :

Unscrew the nut (4) of the generator tie-rod and the generator securing screws.

Tension the belts by means of a lever (MR. $630-66 / 11 a$) using the boss between the two securing clips of the generator and using the generator body for leverage.

Exert an effort of 5 kg . (11 Ibs .) on the end of the lever (use a spring balance), which corresponds to a tension of 28 kg . (62 Ibs) on the belt.
neeping the belts in tension, tighten the generator securing screws and tighten the nut (4) on the generator tie-rod.
8. Tension of compressor drive belt fuehicles with air ronditioning.

NOTE: To perform this operation correctly, α GATES 150 tension-meter, sold under No. 1688-T, MUST be used.
a) Fit the meter 1688 - T on the belt as shown in the illustration opposite, the scale "b against the lever "a".
Without touching the body of the meter, press the lever "u" in the direction indicated by the arrow until the tab "c" touches the belt.
b) Read the belt tension on the scale $11 \mathrm{M}-5 \mathrm{~L}$ corresponding to the belt.
c) If the belt is new, the tension should be between: 85 and 90 Lbs (38 and 41 kg)
d) If the belt is used, the tension should be between : 40 and 50 Lbs
(18 and 23 kg)
e) If the tension does not corresfond to the values given, loosen the securing bolts of the compressor tensioner and tension the belts.
f) Retighter the bolts and re-check the tension

VEHICLES ALL TYPES except D.IE $\rightarrow 10 / 1972$
D. 31-1

SPECIAL FEATURES

Tighten the screws securing the clutch mechanism to the flywheel to 21 to $28 \mathrm{mAN}(2.1$ to 2.8 mkg) (15 to 20 ft lbs)

After resurfacing : the distance between the disc thrust face and the clutch driving plate on the engine flywheel:

$$
29 \quad \begin{gathered}
+0.2 \\
0
\end{gathered} \mathrm{~mm}
$$

Since September 1966 to October 1972

The clutch plate has been modified. The spring support is oblique.

Mechanical clutch control (manual gear change):

Springs. a) Vehicles produced before Sept. 1966.			
Number	Mark	Length	Lood
	mouve	27.3 mm	$60.75{ }_{0}^{2.5} \mathrm{~kg}$
3	green	27.3 mm	$49+2 \mathrm{~kg}$
b) Vehicles produced since Sept 66 up to Oct. 72			
Number	Mark	Length	Load
9		31 mm	${ }_{59}+\begin{gathered}4 \\ 0\end{gathered} \mathrm{~kg}$
Adjustment of the toggles can only be carried out on on assembly.			

Height of the pedal measured from the underside of the pedal plate to the floor ponel:
on PA vehicles (with carpet lining) . $137 \pm 1 \mathrm{~mm}$
on all vehicles except PA (without carpet lining) $142 \pm 1 \mathrm{~mm}$
Clearance between the end of the connecting rod and the clutch housing:

- simple pedal gear . $=2.5$ to 3.5 mm
- Pedal gear with compensator spring . 3 to 4 mm

Clutch clearance. $=1.6$ to 2.4 mm
Diameter of the clutch cylinder. $=18.5 \mathrm{~mm}$

Checking the mechonism :

- Fif the mechanism onto instrument 3108-T
- Using a depth gauge, measure the distance "an between the upper part of the toggles (1) and the bottom "b" of assembly 3108-T.
- This distance must be "an $=39.8+\begin{aligned} & 1.5_{\mathrm{mm}}\end{aligned}$
- Move the clutch up and down by means of a rack press and measure the distance "an again.

SPECIAL POINTS

Clutch type 235 DBRI 490 : No operation is possible on the clutch mechanism except for the mechanism check.

Tighten the screws securing the mechanism on the flywheel
(recessed hex-head screws of 6 mm)
$35 \mathrm{mlN}(3.5 \mathrm{mkg})(26 \mathrm{ft} \mathrm{Ibs})$

- After resurfacing of the engine flywheel; the distance between the disc
thrust face and the clutch driving plate (on the enqine flywheel) is
$0.35 \stackrel{0}{-0.15} \mathrm{~mm}$
Checking the mechanism can only be carried out on a fixture (fixture MR 630-55/9), as shown below.
Distance "a" must be $58,7 \pm 1.40 \mathrm{~mm}$. If it is not, the mechanism must be replaced.
Diameter of clutch cylinder
24 mm .

MR. 630_ 55/9

Clutch plate

Type of engine	DY.3 $(17 \mathrm{~N})$	DX. $(21 \mathrm{~N})$	DX.4 $(19 \mathrm{~N})$	DX. 5 $(29 \mathrm{~N})$
Exterior of the plate	225 mm			

Mechanical clutch control (Manual gearchange vehicles):
a) Height of the pedal measured from the underside of the pedal plate to the floor panel :

- on P.A. vehicles (with carpet lining)
$.137 \pm 1 \mathrm{~mm}$
- on all vehicles except P.A, (without carpet lining). $.142 \pm 1 \mathrm{~mm}$
b) Clearance between the end of the connecting rod and the clutch housing 3 to 4 mm
c) Clutch clearance 1.6 to 2.4 mm

SPECIAL POINTS

Clutch type 235 DBRI 490 : No operation is possible on the clutch mechanism except for the mechanisin check.

- Tighten the screws securing the mechanism on the flywheel (recessed hex-head screws of 6 mm)
- After resurfacing of the engine flywheel; the distarce between the disc thrust face and the clutch driving plate (on the engine flywheel) is $0.35{ }_{-0.15}^{0} \mathrm{~mm}$
Checking the mechanism can only be carried out on a fixture (fixture MR 630-55/9), as shown below. Distance "a" must be $58,7 \pm 1.40 \mathrm{~mm}$. If it is not, the mechanism must be replaced. Diameter of clutch cylinder 24 mm .

MR. 630_55/9

D.IE - VEHICLES - ALL TYPES

SPECIAL POINTS

Clutch type 230 - DIB 440. No operation is possible on the clutch mechanism except for the mechanism check.

Checking the mechanism can only be carried out on a fixture (fixture MR 630-55/9), as shown below. Distance "a" must be $59.8 \pm 1.40 \mathrm{~mm}$. If it is not, the mechanism must be replaced.
Diameter of clutch cylinder
$\begin{array}{ll}22.5 \mathrm{~mm} & \mathrm{C} \\ 24 \mathrm{~mm} \longmapsto & 7972 \\ & 7972\end{array}$
MR. 630_ 55/9

Mechanical clutch control (Manual gearchange vehicles)
a) Pedal height measured from lower face of pedal to the panel of the floor:

- on PALLAS vehicles (rubber pad in place) $137 \pm 1 \mathrm{~mm}$
- on all models except PALLAS (rubber pad removed) $142 \pm 1 \mathrm{~mm}$
b) Clearance between end of the connecting rod and the clutch casing. ... $=3$ to 4 mm
c) Clutch clearance . $=1.6$ to 2.4 mm

Manual 814-1

I - ADJUSTING THE CLUTCH CONTROL

1. Check the height of the pedal:

Standard Vehicles: The height should be $L=142+5$ from the underside of the pedal plate (with the rubber pad removed) to the floor panel
PA. Vehicles (improved presentation): The height should be $\mathrm{L}=137+5 \mathrm{~mm}$ from the underside of the pedal plate, (with the rubber pad in place) to the floor panel.

To obtain this measurement, unscrew the lock nut (1) and adjust the stop screw (2).

2. Adjust the length of the sheath :

The clearance between the end of the connecting rod (5) and the clutch casing must be $\mathrm{J}^{\prime}=2,5$ to $3,5 \mathrm{~mm}$.

To obtain this measurement, move the threaded sleeve (4) by turning the nut (3).

3. Adjust the clutch clearance:

Using a rule, measure the clearance " j^{\prime} " given above.

An assistant should depress the clutch pedal by hand up to the point where resistance is felt when the thrust face comes into contact with the toggles.

Measure once again the clearance " $\mathrm{j} n$. The difference " $\mathrm{j}-\mathrm{j}$ " " should be between 1,6 and 2,4 mm.

If it is not, adjust the screw (6).
4. Check that when the clutch is disengaged fully. there is a clearance between the end of the screw (6) and the sealing sheath of the steering rack.

If there is not, the screw (6) must be replaced by a new screw :

- thickness of the head $=3 \mathrm{~mm}$
- length of the thread $=46,5 \mathrm{~mm}$

VEHICLES WITH MANUAL GEAR SELECTION, produced since Sepiember ig69

II - AdJusting the clutch control

VEHICLES WITH MECHANICAL GEAR SELECTION
(Pedal gear with overload spring.)

5. Adjusting the height of the pedal :
a) vaudard Vehicles: The height must be:
$L=142+5 \mathrm{~mm}$ from the under side of the pedal plate (rubber pad removed) to the floor panel.
b) P. 1 vehicles (improved presentation). The height must be : $\mathrm{L}=137+5 \mathrm{~mm}$ from the under side of the pedal plate (rubber pad in place) to the floor panel. To obtain this measurement, slacken the lock nut (5) and adjust the stop screw (6).

6 Adjust the length of the sheath :

The clearance between the end of the connecting rod
(1) and the clutch casing must be : $J=3$ to 4 mm .

To obtain this measurement, move the threaded sleeve
(3) by adjusting the nut (4).

7. Adjust the overload spring :

a) Insert a sprag of 9 mm between the end of the connecting rod (1) and the clutch casing, to stop the clutch cable from pulling on the clutch pedal.
Check that when the clutch pedal is fully depressed, it is stopped at "a". If it is not, turn the adjusting screw (7) until the correct position is obtained.
b) If adjustment by tightening screw (7) is not possible, move the upper anchoring point for the spring towards the front of the vehicle. (Use tool MR. 630-27 2). Slacken the screw (7) to obtain the adjustment..
c) If adjustment by slackening screw (7) ($\mathrm{L}^{\prime}=33 \mathrm{~mm} \max$.) is not possible, move the upper anchoring point for the spring towards the rear of the vehicle by means of tool MR. 630-27/2.
Tighten screw (7) to obtain the adjustment.
d) Place a sprag of $10,2 \mathrm{~mm}$ between the end of the connecting rod (1) and the clutch casing. When fully depressed, the clutch pedal should not be stopped at "an".
Remove the sprag.

IMPORTANT NOTE: The overload spring must be adjusted and checked with care, so as to avoid rapid deterioration of the clutch stop through bringing it into contact with the toggles of the clutch mechanism, in the "engaged" position.

3332-1

8. Adjust the clutch clearance.

Using a rule, measure the clearance " $J n$ qiven above. An assistant should depress the clutch pedal by hand up to the point where resistance is felt when the thrust face comes into contact with the toggles.

Again measure the clearance " J ' n.

The difference J^{\prime} - J should be between 1,6 and $2,4 \mathrm{~mm}$.
If it is not, adjust the screw (1).
Check that when the clutch is fully disengaged, there is a clearance between the end of the screw (1) and the sealing sheath of the steering rack.
If there is not, the screw (1) must be replaced by a new screw :

- thickness of the head $=3 \mathrm{~mm}$.
- length of the thread $=46,5 \mathrm{~mm}$.

VEHICLES with HYDRAULIC GEA RCHANGE

I . BASIC ADJUSTMENTS.
 (See operation D. 142-0)

II. CHECKING THE CLUTCH CYLINDER FOR LEAKS.

1. Use test bench $2290-\mathrm{T}$ for vehicles with L.H.S. fluid or test bench 3654-T and its accessories 3655-T for those with green L.H.M. fluid.
Connect the pump to the pressure gauge reading 0-100 bars ($0-1500$ p:s.i.).
2. Using a pipe " b ", connect the tapping in the clutch cylinder to the pump.
3. Close the pump bleed screw "a" and pump up to a pressutre of 75 bars ($1070 \mathrm{p} . \mathrm{s}, \mathrm{i}$.).
The pressure gauge must not show any drop in pressure. If it does, the ring seal or the piston and cylinder are defective.
4. Release the pressure by slackening the bleed screw " an on the pump.

Remove the pipe "bn.

III. BLEEDING A CENTRIFUGAL REGULATOR.

NOTE : The bleeding is carried out without pressure. Lightly unscrew the bleed screw of the pressure regulator.
5. Remove the cap from the front bleed screw (1) of the regulator and fit on to this flexible pipe (preferably transparent). Insert the end of the pipe in the hydraulic fluid reservoir.
6. Check that the two bleed screws on the regulator are tight.

Start the engine and run it at a speed between 1500 and 2000 r.p.m. by turning the adjusting screw for accelerated idling.
7. Slacken the centrifugal requlator bleed screw (1) (1).
8. Slowly reduce the engine speed to :
-500 to 600 r.p.m. (Vehicles $\longrightarrow-19 / 1968$)
-625 to 675 r.p.m. (Vehicles $\longrightarrow 9 / 1968$)
by turning the adjusting screw for accelerated idling.
9. Let the engine idle for about 2 minutes, then tighten the bleed screw.
10. Remove the flexible pipe and fit the rubber cap onto the bleed screw (1).

IV. CHECKING THE CLUTCH DISENGAGEMENT.

12. Put the vehicle in the "low" position. Slacken the bleed screw on the pressure regulator.
13. Disconnect :

- the lead from the negative terminal of the battery,
- the fuel feed pipe on the fuel pump,
- the union (1) on the connecting pipe between the hydraulic selector and the clutch re-engagement control.

14. Remove the front, L.H suspension sphere.
15. Prepare the test bench :

- bench 2290-T for vehicles with LHS 2 fluid. or bench 3654-T for vehicles with LHM fluid. and accessories 3655-T.
- Connect the pressure gauge M1 (100 bars) (1500 PSI) to pump C on the test bench by means of pipe H .
- Connect outlet E of the pump C on the test bench to the union just disconnected (§13), female part, clutch re-engagement control end, by means of a pipe A and a pipe B.

16. Insert instrument MR 630-55/6 into the hole for the starting handle.
Place a torsion wrench F with flexure 0 to 20 $\mathrm{m} \Lambda \mathrm{N}(0$ to $2 \mathrm{~m} . \mathrm{kg}$.), (14.4 Ft . Ibs) fitted with a socket of 14 , on the end of instrument MR. 630-55/ 6.
17. Tighten the bleed screw D on the hydraulic a bench; -Proceed to pump, increasing the pressure.
18. Apply on effort of $15 \mathrm{~m} \Lambda \mathrm{~N}(1,5 \mathrm{~m} . \mathrm{kg}$.) ($10,8 \mathrm{Ft}$ Ibs) on to instrument $630-55 / 6$. Note the pressure at which clutch disengagement takes place, i.e. the moment when the instrument starts to turn for a torque of 10 m NN ($1 \mathrm{~m} . \mathrm{kg}$.) (7 Ft . Ibs). Note this pressure. (e.g. : $\mathrm{P}=38$ bars) (540 PSI).

V. CHECKING THE CLUTCH ENGAGEMENT PRES. SURE.

19. By pumping, increase the pressure to 40 bars. (570 PSI). Then release the pressure very slowly by slackening the bleed screw D on the test bench. At the same time, turn the handle while watching the pointer of the torque wrench F.
Note the pressure at the exact moment when slipping is obtained for a torque of 10 mAN ($1 \mathrm{~m} . \mathrm{kg}$.) $(7.2 \mathrm{ftIbs})(\mathrm{e} . \mathrm{g} .: \mathrm{Pl}=28 \mathrm{bars}-410 \mathrm{psi})$ The difference between this pressure and that noted in $\S 18$ should be no more than 11 bars (160 psi) (in the example taken : $\mathrm{P}-\mathrm{Pl}=38-28=10$ bars) (150 PSI).
20. Unscrew completely the bleed screw D on the test-bench.
21. Withdraw the torque wrench and instrument MR. 630-55/ 6 from the starting handle hole.

VI. CHECKING THE PRESSURE SUPPLIED BY THE HYDRAULIC SELECTOR.

22. Prepare the test bench.

a) Disconnect the pipe H from the pressure gauge Ml and from the test bench pump.
b) Connect the pressure gauge M2 (200 bars) (3000 PSI) to the test bench pump D by means of pipe H.
23. Tighten the bleed screw E on the test bench. Start to pump. Increase the pressure in the clutch cylinder to 50 bars (720 psi), so causing clutch disengagement.
24. Connect the pressure gauge M1 on to the union previously disconnected ((13), male part, h 'rdraulic selector outlet, by means of the two pipes A.
25. Connect the lead to the negative terminal of the battery.
26. Connect the fuel feed pipe to the fuel pump.
27. Start the engine. Adjust the normal idling speed :

- 550 to 600 r.p.m. (Vehicles \longrightarrow 9/1968)
- 625 to 675 r.p.m. (Vehicles $\longrightarrow 9$ 9; 1968)

28. Tighten the bleed screw on the pressure regulator.
29. Engage gear.

- The pressure indicated by pressure gauge M1 should be 29 bars $\min (420 \mathrm{psi})$.

IMPORTANT :

1°) During this entire operation, check the pressure in the clutch cylinder by pressure gauge M2; it should not drop.
2°) Put the gear lever into neutral position and stop the engine.
30. Release the pressure in the clutch cylinder by opening bleed screw E on the test bench.
31. Slacken the bleed screw on the pressure regulator.
32. Disconnect both the pipe assemblies. Union to pressure gauge M1. Union to test bench pump.
33. Connect the union to the pipe assembly hydraulic selector and clutch re-engagement control.
34. Fit the front, LH suspension sphere.
35. Tighten the bleed screw on the pressure regulator.
36. Start the engine. Adjust the accelerated idling : -875 to 925 r.p.m. (Vehicles $\longrightarrow 9^{\prime}$ 1968) - 850 to 900 r.p.m. (Vehicles $\longmapsto 9$ 1968)
37. Put the vehicle in the "normaln height position.
38. Fit the rubber plug on to the starting handle pussage.

DBW. VEHICLES All types

1. DESCRIPTION

- The "ns 21 " vehicles (carburettor or electronic fuel injection) may be optionally fitted with a BORG-WARNER fully automatic gearbox "type 35".
- Principal components of the transmission
- A torque converter composed of three elements (impellor, turbine, reactor) permitting a variable multiplication ratio of the torque, from 2.3 to 1.
- An oil pump (activated by the converter impellor) supplying oil under pressure necessary to the operation of the converter and the hydraulic gear change control unit and also for the lubrication of the epicyclic gear train.
- A hydraulically controlled automatic gear box, including an epicyclic gear train making it possible to obtain three forward gears and one reverse gear.

II. advantages of the converter

- The converter multiplies the engine torque when starting and on accelerating, allowing :
- the use of only a 3 -speed gearbox,
- flexible driving behaviour, even at low speeds,
- rapid acceleration at low engine speed,
- increased "pulling power", a desirable quality when pulling caravans or for driving with full load.
- The converter, coupled with an epicyclic gear train gearbox makes the following possible :
- the elimination of the classical cut out clutch,
- the damping of noises and vibrations, the engine being mecharlically isolated from the gearbox.
- The converter ensures under all circumstances smooth transmission of the power generated by the engine without any jolting.

III. CHARACTERISTICS

Converter - hydraulic coupler.
Brand :
FERODO 250 I (transmission 1680)
Licence : BORG WARNER.
It is composed of a leakproof housing filled with oil and containing three bladed wheels:

- Two of these are mobile the impellor and the turbine.
- the third, the reactor, is fitted on a free wheel by which it is immobilised until the turbine reaches a certain speed when it frees the reactor.

Until this speed, the assembly operates as a torque converter achieving a ratio of variable multiplication, from 2,3 to 1 .

Beyond this speed, it operates as a hydraulic coupler.

IV. PARTICULAR FEATURES

The converter and the gearbox use the same oil. This oil is of a different quality to that used for the crownwheel and pinion and differential assembly which is to be found in a separate housing.
\qquad

- Total capacity of the converter assemblv, gearbox and control circuit on filling at the factory: . Approx. 6 lts. ($10 \frac{1}{2}$ pts)
- Volume of oil renewed after draining: Approx. 2.5 lts (4.4 pts)

The gearbox and convertor assembly are filled through the front dip stick tube.
IIIIORT INT: Filling must only take place with the engine running and with the selector lever in position * P.

Tightening torques:

[^2]
VEHICLES WITH HYDRAULIC GEAR CHANGE

1. CHECKING AND POSITIONING THE HYDRAU゙. LIC SELECTOR

1428

1. Put the gear selector lever in the first speed position
2. Remove rubber plug from locating hole "a"
3. Insert alignment rod $\phi=3,94 \mathrm{~mm}(2429 \mathrm{~T})$: it must penetrate approximately 30 mm . to obtain α correct position of the selector. If it does not, slightly turn the selector lever to ensure complete insertion of rod.
4. Loosen coupling clamp(1). Put the selector lever back to the first speed position. Tighten the clamp.
5. Withdraw the alignment rod (2429 T) and refit rubber plug in locating hole.

II- ADJUSTING THE GEAR CHANGE CONTROL
6. Remove the gearbox cover.
7. Remove the covers of the selector fork shafts for reverse, third and fourth gears.
8. If required, check and adjust the operating dogs by means of fixture 3172 T .

9. Checking the position of the gears :

NOTE: With the cover removed the gearbox is not in neutral position, the reverse fork shaft is brought beyond neutral by its return spring. To select a gear, it is essential to bring reverse to neutral using a^{\prime} screw driver or gauge :

$$
3183 \mathrm{~T} \text { hydraulic gear change } \rightarrow \text { 9/1969 }
$$ 3188 T hydraulic gear change $\longmapsto 9 / 1969$

a) Check he position of first gear : Engage first gear, the sliding pinion of first/ second gear in contact with the first gear loose pinion. Measure and note the distance by which the fork shaft projects from the face of the housing. For example : $34,3 \mathrm{~mm}$
b) Check the position of second qear : Engage 2nd gear, the sliding pinion in contact with the 2nd. gear loose pinion Check and note the fork shaft projection For example : $55,3 \mathrm{~mm}$.
c) Check the position of third gear Engage 3rd gear, the sliding pinion in contact with the 3rd gear loose pinion Measure and note the fork shaft projection. For example : 1.3 mm
d) Check the position of fourth gear :

Engage 4 th gear, the sliding pinion in contact with the 4 th gear loose pinion.
Again check the fork shaft projection.
For example : $23,9 \mathrm{~mm}$.

x. 59

10. Check the position of neutral for reverse :

Determine the end float of the reverse fork shaft when in neutral.
Engage 3 rd or 4 th. gear.
Free the gauge 3183-T (or 3188-T)
Push the reverse fork shaft towards the rear of the gearbox and measure, by means of a depth gauge, distance " $\boldsymbol{\ell}$ " between the end of the shaft and the front face of the gear box, for example : " ℓ " $=1,6 \mathrm{~mm}$
Pull the shaft forwgrds and check distance
" ℓ " , for example " $\ell 1$ " $=2,6 \mathrm{~mm}$,. Take the average of both measurements:

$$
\frac{\ell+\ell 1}{2}=\frac{1,6+2,6}{2}=2,10 \mathrm{~mm}
$$

In the example chosen, it will therefore be necessary to adjust the shaft to a distance $\boldsymbol{\ell}=2,10 \mathrm{~mm}$
11. Fit the cover (smear the joint face with CURTYLON paste). Tighten the securing screws.

12. Adjusting the cylinder of reverse gear.:

Screw the cylinder-piston assembly to bring it into contact with the selector control dog while inserting some "Hyperix" paste into the tapped hole for the cylinder stop screw. Then screw in the cylinder until the shaft protrudes beyond the front face of the gearbox. (for example $\boldsymbol{\mathscr { E }}=2,10 \mathrm{~mm}$ dimension previously determined).
Smear the cylinder stop screw with CURTYLON paste).
Place a rubber pad into the tapped hole and tighten the screw.

NOTE : It is essential to renew the rubber pads of the gear change control cylinders after each dismantling.
13. Adpusting the strokes of the selector fork shafts: NOTE: To engage the different gears, during this 1 operation, fit a screw $\phi 7$ or better still a threaded " T " in the tapped holes of the shafts.
a) Adjust the stroke of first gear :

Engage 1st gear fully-Make sure that this gear is fully engaged by checking the shaft projection (i. e. $34,3 \mathrm{~mm}$ as determined in § 9 line a). Screw in the cylinder-piston assembly for 2nd gear to bring it into contact, while introducing some "Hyperix" paste in the tapped hole receiving the screw (1), a slight shift of the lst-2nd selector shaft is definable by touch and indicates that piston and control dog are in contact. Then screw the cylinder a further $1 / 2$ of a turn to ob$\operatorname{tain} \alpha$ clearance of 0,7 to $0,9 \mathrm{~mm}$. between sliding sleeve and loose pinion. Smear the cylinder stop screw (1) with CURTYLON paste.
Place a rubber pad in the tapped nole. Tighten the screw.
Remove screw C holding the piston in the cylinder.

-it) Adjust the stroke of second gear:

Pull an the shaft to engage 2 nd gear fully.

- Make sure that gear is fully engaged by checking the shaft projection (for example $55,3 \mathrm{~mm}$ as determined in § 9 line b)

Remove screw or threaded T fitted on the end of the shaft.

Bring the cylinder-piston assembly for first gear in contact with the control dog and operate as described above.

c) Adjust the stroke of third gear.

Engage 3 rd gear fully. Make sure that the gear is fully engaged by checking the shaft position ($1,3 \mathrm{~mm}$ measurement determined in § 9 line c)

Bring the cylinder-piston assembly for fourth gear in contact with the control dog and operate as indicated above in line a (1.3 mm . measurement determined in $\S 9$, line C). 1
d) Adjust the stroke of fourth gear.

Engage 4th gear fully. Ensure that the gear is fully engaged by checking the protusion of the shaft ($23,9 \mathrm{~mm}$ as measured in § 9 line d)

Bring the cylinder-piston assembly for 3 rd gear in contact with the control dog and operate as described above in line a.
14. Fit the front cover over the end of reverse gear shaft Curtylon and the cover over the end of $3 \mathrm{rd} / 4$ th gear shaft.

Make sure that the ring seal is in position

15. Adjusting the clutch lock:

With first gear engaged, ensure that there is a clearance (at "J") between the clamp (1) and the head of the screw (2) securing the cover of the shaft,

III. CHECKING A CLUTCH LOCK

16. NOTE
$\longrightarrow 9 / 1966$ - Use test-bench 2290-T (painted grey) the accessories bear no markings
9/ 1966 - Use test-bench 3654-T (painted green) the accessories bear green markings
17. Connect pump outlet "c» to pressure gauge M2 and to clutch lock feed pipe "b". Connect lock outlet "an" to pressure gauge M1.
Fit fixture MR. 630-43/20.
18. Operate the pump to build up the pressure to 70 bars (1000 psi) read on gauge M2.
19. The clutch lock control rod being in neutral position-pressure gauges M1 and M2 must give the same reading.
20. Bring the screw B of fixture $630-43 / 20$ in contact with the control rod and screw in by $1 \frac{1}{2}$ turns. Release the pump bleed screw «d». Pressure given by gauge M2 must drop to zero while remaining unchanged on gauge M1.

21. Tighten on screw B from 7 to 13 turns. Pressure read on gauge M1 must drop to zero.
22. Reverse fixture MR 630-43/20 in order to operate on the other end of clutch lock control rod.
23. The same readings must be obtained while repeating the operations explained ($\S 4$ and 5).

1. ChARACTERISTICS.

1. Gear ratios:

NOTE: The speeds are given for vehicles fitted with 180-380 XAS, 180 HR. 380 XAS and 185 HR. 380 XAS types for which the rolling circumference is : $2,07 \mathrm{~m}$. (81.5 in)
a) Vehicles all types (except D.V.) \rightarrow 9/1967

c) Vehicles DT $\longmapsto 10 / 1968$ and DV $\quad \rightarrow \quad 9$ '1969

Gear	Tooth ratio	Gearbox ratio	Crown wheel and pinion	Overall ratio		Speed(1000 engine r.p.m.)	
				$\begin{gathered} \text { Torque } 8 / 35 \\ \text { DV } \end{gathered}$	$\begin{gathered} \text { Torque } 7 / 34 \\ \text { DT } \end{gathered}$	($\begin{gathered}\mathrm{Km} / \mathrm{h} \\ \text { Torque } \\ \text { DV/35 }\end{gathered}$	
1	$\frac{12}{39}$	0,3076(3,25:1)	$\frac{8}{35}$	$\begin{aligned} & 0,0703 \\ & \quad(14.22: 1) \end{aligned}$	$\begin{array}{\|c\|} \hline 0,0633 \\ (15.78: 1) \end{array}$	8.7-(5.5)	7,9 (4.91)
2	$\frac{18}{33}$	0,5454(1.83: 1)	(4,375: 1)	0,1246	0,1123		
3	23			(8.02: 1)	(8,90:1)	15.5-(9.63)	13.9 (8.64)
3	$\frac{23}{27}$	0,8518(1,17:1)		0,1947 (5.11: 1)	0.1752 ${ }^{(5.71: 1)}$	24.2-(15.10)	21,8(13.55)
4	$\frac{28}{22}$	1,2727(0,79:1)	$\frac{7}{34}$ (DT)	$\begin{array}{\|l} 0,2909 \\ \quad(3.45: 1) \end{array}$	$\begin{aligned} & 0,2619 \\ & \quad(3,83: 1) \end{aligned}$	36.1-(22.43)	32.5 (20.19)
REV.	$\frac{13}{22} \times \frac{22}{41}$	0,3170(3,15: 1)	(4,857: 1)	$\begin{array}{r} 0,0724 \\ \quad(13.80: 1) \end{array}$	$\begin{array}{r} 0,0652 \\ \quad(15,29: 1) \end{array}$	9.-(4.38)	8.1 (5.06)

e) Vehicles DV and DT \longmapsto 9/1971

2. Oil capacity of gearbox :

GEARBOX

(Hydraulic gear selection)

(Mechanical gear selection)

DIFFERENTIAL
D. 34.1

II. SPECIAL POINTS

D. 33.1

1. Speedometer drive :

- Torque of $8 / 35$
$\frac{10}{21}=0,4761$
$7=0,4375$
- Tarque of $7 / 34$
$\frac{7}{16}=0,4375$

2. Adjustments (Gearbox, all types)

- Distance between thrust race quide screw and clutch casing joint face : . . . 94 to 95 mm .
- End-float of 3 rd and 4 th synchro . $J=0,10$ max.
- Distances between 1 st and 2 nd synchro and loose pinions : equal to within $0,4 \mathrm{~mm}$.
- Clearance between front bearing and front bearing cap : 0,05 mm. max.
- Adjustment of 4 th gear engagement stroke : . J = $=0$, to $0,6 \mathrm{~mm}$.

2a. Special adjustments (hydraulic gear selection):

- Clutch re-engagement lock: distance between front face of clamp and end of $1 \mathrm{st}-2$ nd shaft :

1 mm approx.

- Release springs of control cylinders :
- Length under load : . 48; 8 mm for 24,5 $\pm 1,5 \mathrm{~kg}(50.7$ to
$57.3 \mathrm{lbs}) 31,5 \mathrm{~mm}$, turns joined
- Adjustment of gear engagement strokes (exept for reverse)

Clearance between slider and loose pinion
$\mathrm{J}=0,4$ to $0,6 \mathrm{~mm}$

N.B. : This operation applies for both 4 and 5 speed gearboxes

1. ADJUSTING THE STROKE OF FOURTH GEAR
2. Remove the gear box cover
3. Engage fourth gear the sliding sleeve for 3rd/4th gear in contact with the 4 th gear loose pinion bring screw (2) in contact with the fork shaft and screw in by $\frac{1}{2}$ a turn to obtain a clearance of 0.4 to 0.6 mm between sliding gear and 4th gear loose pinion. Tighten lock nut (1)
4. Fit gearbox cover. Tighten the securing bolts
5. CHECKING THE GEAR CHANGE RELAY LEVER
6. Check the relay lever alignment (4)
7. While changing the gears the shift lever must not touch the gate surround (10)
III. ADJUSTING THE GEAR CHANGE CONTROL
8. Adjust the control relay lever

Relay lever (4) and control lever for
fork shaft spindle must be in line.
Proceed as follows to obtain correct position
a) Disconnect rod (3) from lug (7) on relay lever
b) After slackening the securing screws move the lever mounting (8) in its stud-holes as well as in the studholes of the bracket to obtain correct vertical and lateral position.
c) Tighten the mounting securing screws
d) Connect rod (3) to lever (7)
7. Adjust the movement of the gear shift lever
a) Gear selection travel (travel F.F1) Adjust the control cable length so that gear shift lever does not touch surround (10)
To do this
a) Slacken nut (11) and operate connecting bush (12) to adjust the cable sheath
b) Tighten nut (11)

b) Gear shift travel (movement F2-F3)

Adjust the control rod length (1) so that gear change lever does not touch the surround in any selected position.

To do this :
a) Slacken nut (2)
b) Disconnect control rod (1) from lug (4)
c) Operate ball pin (3)
d) Connect ball pin (3) to lug (4)
e) Tighten nut (2)

1. CHARACTERISTICS

1. Gear ratios:

VEHICLES: DJ all type \longrightarrow is 19 il

NOTA: Speeds are given for vehicles fitted with tyres 180 HR 380 XAS or 185 HR 380 XAS whose rolling circumfererice is $2,07 \mathrm{~m}$. (81.4 ms), under load.
a) DI III Npes and DP whicles

Gears	Tooth ratios	Gearbox ratios	Crown wheel and pinion	Overall ratios	Speed at 1000 RPM
lst 2nd 3rd $4 t^{2}$ 5th. REV	$\begin{aligned} & \frac{12}{39} \\ & \frac{28}{37} \end{aligned} \ldots . . \begin{aligned} & \\ & \frac{37}{37} \\ & \frac{37}{29} \end{aligned} \ldots . \frac{33}{32}$	$\begin{array}{r} 0,3076-3,25 \\ 0,5151-1,94 \\ 0,7567-1,32 \\ 1,0312-0,97 \\ 1,2758-0,78 \\ 0,3170-3,15 \end{array}$	$\begin{gathered} 8: 35 \\ =0,2235 \\ 4,375: 1 \end{gathered}$	$0,07032-14,22$ $0,1177-8,49$ $0,1729-5,78$ $0,23562-4,244$ $0,29162-3,42$ $0,07247-13,78$	$\begin{array}{cl} 8.734 & (5.4 \mathrm{MPH}) \\ 14,624 & (9 \mathrm{MPH}) \\ 21.483 & (13.3 \mathrm{MPH}) \\ 29.275 & (18.1 \mathrm{MPH}) \\ 36.2199 & (22.4 \mathrm{MPH}) \\ 9.001 & (5.6 \mathrm{MPH}) \end{array}$

b) DT I shinles (opuional)

2. Gear ratio for speedometer :

- Crown wheel and pinion $7 / 34$. $7 / 16=0,4375$
- Crown wheel and pinion $8 / 35$ $10 / 21=0,4761$

3. Capacity and quality of oil :

- Oil.. TOTAL EP 80

11. PARTICULAR FEATURES
12. End float for 3rd ond 4 th gear synchromesh : J J = 0, 10 mm maxi
13. Tightening torques on georbox:

- securing scien for fork or control dog 40 m AN (4 mkg)
- plug lor ithing and draining $35-45 \mathrm{mlN}(3,5$ to $4,5 \mathrm{mkg})(25$ to 32 ft Ibs)

3. Adjusting crown wheel and pinion and differential

- Crown wheel and pinion. Conic distance: engraved on end face of bevel pinion
- Matching number : engraved on crown wheel and pinion
- Backlash (measured at outer end of crown wheel teeth)

Differemiai
. Satellite end-float at point of minimum clearance

- Planet end-llout ar point of minimum clearance

0,16 to $0,24 \mathrm{~nm}$
$0,3 \mathrm{~mm}$ at the most
0.1 at the most
4. Tightening torques for crown-wheel and pinion and differential

Differen + cll shaft

Bush-nat (bearing outer cage)	$100 \mathrm{~m} \mathrm{~W}(10 \mathrm{mkg})(72 \mathrm{ft} \mathrm{Ibs})$
Nut (beaning inner cage)	$150 \mathrm{mWN}(15 \mathrm{mkg})(108 \mathrm{ft} \mathrm{Ibs})$
Screw locking mat for beaning inne: cage	10 mW (1 mkg) (7.2 ft lms)
Screws scouring crown wheel and differentiul housing	115-130 m IN (11.5-13 mkg, 164-95 ft Ibs,
Sorews securing dive outlets	20.30 m)11 (2-3 mkg) (14.4-22 ft 1ms

gearbox

DIFFERENTIAL

1II. DIAGRAMS OF GEARS

III. PRACTICAL OPERATION

1. Gearbox controls

The driver has two methods of controlling the operation of the gearbox :
a) The selector lever: This has 6 positions:

The positions "D" and " 2 " and "l» correspond to the three different types of forward motion.
b) The accelerator: This pedal has two functions:

- To alter the position of the carburettor butterflies (or the strangler-flap on injection models).
- To operate the hydraulic selector (which is connected by a cable to the butterfly spindles).:

The length of time in each gear increases the more the pedal is depressed and consequently the more rapid is the acceleration of the vehicle (the engine tums at higher speeds).
When the pedal is fully depressed this time is at a maximum. However, if the speed of the vehicle permits, a lower gear may be engaged. A hard point in the pedal travel marks this extreme position called the "KICK-DOWN, position. At the same time it corresponds to the maximum opening of the butterflies (or the strangler flap).

2. POSITION "P": Parking

- In this position, the epicyclic gear train is freed from the convertor : the motion of the engine is not therefore transmitted to the wheels.
- The outlet shaft is locked by a dog engaging in the outer teeth of the crown wheel of the epicyclic gear train : the front wheels are locked mechanically.
- This position is used for parking and for carrying out adjustments with the engine running.

NOTE : It is possible to operate the starter motor in this position.
IMPORTANT : NEVER SELECT POSITION "P"WHILE THE VEHICLE IS MOVING.

3. POSITION "Rn: Reverse.

This position should be selected when the vehicle is completely stopped and with the engine idling (the reversing lamps light up automatically).

4. POSITION "N»: Neutral.

In this position the epicyclic gear train is disconnected from the convertor : the engine's motion cannot therefore be transmitted to the wheels.

NOTE : It is possible to operate the starter motor in this position,

5. POSITION "D": Automatic changing of the three forward gears (drive),

 This position is used for the normal running of the vehicle :a) Acceleration of the vehicle, standing start:

- When starting the first gear is always used
- The successive gear's are engaged automatically as the vehicle accelerates. The more the pedal is depressed, the more appreciable is this acceleration : it is at a maximum in the "KICK-DOWN" position. However the gears cannot be changed above a certain speed which corresponds to the speed of maximum power of the engine :
- Changing from lst. to 2nd. gear : max, speed $=38$ to 41 mph (60 to $65 \mathrm{~km} / \mathrm{h}$)
- Changing from 2nd. to 3 rd . gear : max. speed $=72$ to 76 mph (115 to $120 \mathrm{~km} / \mathrm{h}$)
b) Deceleration of the vehicle :

When the vehicle slows down the gear is changed down automatically.
NOTE : In position " D " the engine no longer has any decelerating effect when lst. gear is engaged.
c) Forced acceleration, vehicle moving:

If the vehicle is moving at a speed of less than 63 to $66 \mathrm{mph}(100 \mathrm{to} 150 \mathrm{~km} / \mathrm{h}$) in 3 rd . gear (or less than 31 to 34 mph (50 to $55 \mathrm{~km} / \mathrm{h}$) in 2nd. gear) and if the accelerator is sharply depressed to the "KICK-DOWN" position the gear will be changed down automatically. This device thus makes it possible to obtain the maximum acceleration necessary on certain occasions (overtaking, for example).

NOTE : If the vehicle is travelling at a speed of less than $31 \mathrm{mph}(50 \mathrm{~km} / \mathrm{h})$ it is possible to change directly from 3rd. to lst.

6. POSITION «2": Automatic changing of the first two forward gears.

This position is used for town traffic or motoring in mountainous areas.
In this position the operation is identical to that of position " D ", but only the first two gears are used. When the second gear is engaged, the speed of the vehicle is not limited : never exceed the maximum engine speed (6000 rpm)

NOTE : In this position the engine no longer has any braking effect when lst. gear is engaged.
N.B:Changing doun by moving the lever from position «D»to position "2":

In this case the enqagement of the 2 nd. gear is not restricted. It can occur at any speed.

CAUTION : In order to avoid exressive speeds, which are harmful to the engine, never perform this operation at a speed higher than $81 \mathrm{mph}(130 \mathrm{~km} / \mathrm{h})$.
7. POSITION "1": Locking of the first gear

This position is used for exceptional driving conditions : travelling up or down steep gradients (mountainous areas, garage ramps).
In this position the vehicle normally starts in lst. gear, but the latter remains locked, whatever the speed of the vehicle : never exceed the maximum speed of the engine (6000 rpm).

NOTE: This position of the lever is the only one in which the braking effect of the engine is used in lst. gear.
N.B: Changing down by moving the lever from positions «1)" or "2"to position "1".

In this case the engagement of first gear is restricted to avoid excessive speeds which are harmful to the engine: it can never.take place at a speed-above the appropriate speed limit. The latter can have two values according to the position of the accelerator pedal :

- all positions, except at "KICK-DOWN". : maximum speed $=31-34$ mph ($50-55 \mathrm{~km} / \mathrm{h}$)
- pedal fully depressed at "KICK-DOWN". : maximum speed $=$ about $50 \mathrm{mph}(80 \mathrm{~km} / \mathrm{h})$

If this operation is carried out at a higher speed, the 2 nd gear will be engaged : first gear will not mesh until the vehicle has sufficiently slowed down and will then remained locked.

8. Starting the engine:

The starting motor can only be operated, using the ignition switch, when the selector lever is in positions
" N " or " P ".
IMPORTANT:

- It is impossible to start the engine by towing the vehicle.
- Never operate the starter motor relay (on the battery) before ensuring that the selector lever is in position « N » or « P ».

9. Towing the vehicle:

As a general rule, the front of the vehicle should always be raised for towing.

Exceptionally, however, and over very short distances, the vehicle can be towed slowly after putting the selector lever in position " N " (provided that, however, the gearbox is working normally and that the oil-levels are correct).

Y. DESCRIPTION OF GEARBOX

The gearbox comprises

- A train of epicyclic pinions giving three forward gears and ne reverse gear.
- Two multi-disc clutches, each controlled by a hydraulic pis ion.
- Two brake bands each operated by a hydraulic servo iri anism.
- A free wheel locking the sun gears so that lst gear can be obtained.
- A pair of pinions A (ratio $=38 / 33$), situated at the outlet of the epicyclic gear train, returns the movement to the bevel pinion.
- A hydraulic gear selector situated on the lower part of the casing : it ensures the automatic control of the clutches and the brakes when changing gear.
- A centrifugal governor which functions in conjunct' 'I wis the hydraulic selector.
- The crownwheel and pinion/differential assembly in a separate casing.

ENGAGEMENT OF VARIOUS PARTS OF. EPICYCLIC TRAIN

Position of selector lever	Gear	Rear clutch	Fiont clutch	Rear brake	Front brake	Free wheel
"1"	1st	X			X	
"2" or "D"	1st	X				X
"1", "2", or "D"	2r.d	X		X		
"D"	3rd	X	X			
"N"Neutral						
"R"			X		X	
"P"Parking					X	

COMPONENTS :
Conductors

Fixed
Loose
D. $35-49$

1st GEAR (Positions "1", "2", or "D")

- Rear clutch (1) operating : it connects the forward movement sun gear (5) and the torque convertor.
- When the selector lever is in position "In the front brake (3) immobilizes the planetary gear holder (4) which thus becomes a "reaction" element.
- When the selector lever is in position " 2 " or " D ", the front brake (3) is freed : the free wheel (2) immobilizes the planetary gear holder (4) when the engine starts to drive the vehicle ("pulling"). However, when there is deceleration and the engine tends to have a braking effect on the vehicle, the movement reverses and the free wheel allows the planetary gear holder to turn. In this case there is an "engine brake" (decelerating effect on the engine).
- The reduction ratio is : 2.39 : 1

2nd GEAR (Positions " 2 " or " D_{n})

- Rear clutch (1) operating : it connects the forward movement sun gear (5) and the torque converter.
- The rear brake (6) immobilizes the reverse movement sun gear (7) which thus becomes a «reaction" element.
- The planetary gear holder (4) turns "loose».
- The reduction ratio is : $1.45: 1$

COMPONENTS \square Condugitors

Fixed \square Loose

THIRD GEAR (Position "D")

- Rear clutch (1) operating, it connects the forward movement sun gear (5) and the torque convertor.
- Front clutch (8) operating, it joins the two sun gears (5) and (7), thus locking the epicyclic gear train which turns as a single unit.

- The reduction ratio is 1 .

REVERSE GEAR (Position "R")

- Front clutch (8) operating, it connects the forward movement sun gear (7) and the torque convertor.
- The front brake (3) immobilizes the planetary gear holder (4).
- The movement of the sun gear (7) is transmitted to the crownwheel by one set of planetary gears only. Therefore the crownwheel turns in the opposite direction to the engine.
. The reduction ratio is : 2.09: 1 .

NEUTRAL (Position "N" or " $\mathbf{P}_{\text {" }}$)

- The two clutches (1) and (8) are not operating, thus there is no mechanical connection between the engine and the epicyclic gear train.
- In position " N " the brake bands (3) and (6) are released.
- In position " P " the front brake band (3) is engaged, but the clutches are not operating so there is no mechanical connection between the engine and the wheels.
- By selecting position " P », a dog which locks the outlet crownwheel of the epicyclic gear train, thus immobilizing the vehicle, is mechanically operated.

VII. PARTICULAR FEATURES

1. Selection lay-out of ranges of operation : It is this which, in conjunction with the locking mechanism of the hydraulic selector, holds the lever in each of its positions.

$$
\text { D. } 33-14
$$

To change from one position to another, pull the lever backwards, then move it sideways.

However, to go from position "R" (reverse) to position " P ", the lever should not be pulled out fully in order to prevent it striking the shoulder " α ".

2. Tightening torques

- Nut on primary shaft	$80 \mathrm{~m} \Lambda \mathrm{~N}$ ($15-18 \mathrm{mkg}, 108-130 \mathrm{ft} \mathrm{Ibs})$
- Speedo wheel	$200-220 \mathrm{~m} \Lambda \mathrm{~N}(20-22 \mathrm{mkg}, 144-158 \mathrm{ft} \mathrm{lbs})$
- Securing bolt of central bearing	. $20 \mathrm{mAN}(2 \mathrm{mkg}, 14-44 \mathrm{ft} \mathrm{lbs}$)
- Front casing securing bolts.	. $17 \mathrm{~m} \wedge \mathrm{~N}(1.7-2 \mathrm{mkg}, 12.3-14-44 \mathrm{ft} \mathrm{lbs}$)
- Lower casing securing bolts	. $10 \mathrm{~m} / \mathrm{N}$ ($1 \mathrm{mkg}, 7.22 \mathrm{ft} \mathrm{Ibs)}$
- Securing bolts for oil pump	15-20 mAN (1.5-2 mkg, 10-84-14-44 ft lbs)
- Securing bolts for hydraulic selector	. $10 \mathrm{~m} / \mathrm{N}$ ($1 \mathrm{mkg}, 7.22 \mathrm{ft} \mathrm{lbs)}$
- Bolt for conical pinion retaining plate.	15 m AN ($1.5 \mathrm{mkg}, 10.84 \mathrm{ft} \mathrm{Ibs)}$
- Assembly bolts of casings ($\phi=7 \mathrm{~mm}$)	$11 \mathrm{~m} / \mathrm{N}(1.1 \mathrm{mkg}, 7.96 \mathrm{ft} \mathrm{lbs})$
- Assembly bolts of casings ($\phi=9 \mathrm{~mm}$) .	. $25 \mathrm{~m} \Lambda \mathrm{~N}(2.5 \mathrm{mkg}, 18.08 \mathrm{ft} \mathrm{Ibs})$

3. Crown wheel and pinion, differential and gearbox outlets :

The adjustment of these components is exactly the same as for the corresponding components on the standard gearbox.

D. bw VEMiCLES ALL TYPES

BORG-WARNER GEARIOX

HYDRAULIC GEARCHANGE CONTROL

1-BASIC DIAGRAM.

II - DESCRIPTION.

- Gearchanges are controlled by multiple disc clutches and brake bands. These components are hydraulically operated, hydraulic power being supplied by means of a pump driven by the engtine of the vehicle.
- This hydraulic power is distributed by a slide valve assembly grouped in the selector block.

The hydraulic control unit consists of :

- The primary and secondary regulator slide ralies :

They control the pressure of the oil supplied by the pump and permit it to feed the converter and the lubrification circuit.

- The manually operated control ralve connected to the gear selector:

This allows the driver to choose the different gear ranges.

- The acceleration and "change-doun" slide valies:

These valves are connected to the accelerator control; they make it possible to control the automatic gearchange according to the engine load.

- The centrifugal regulator fitted on the outlet of the epicyclir fear train:

This makes it possible to control the hydraulic unit according to the vehicle speed

- The pressure modulation slide vulce:

This modifies the pressure in the main circuit according to the position of the accelerator and the speed of the vehicle.

- The gearchange slide ralces (Ist-2nd and 2nd - 3rd)

These directly control the front clutch and one of the brake bands according to the position of the accelerator and the speed of the vehicle.

- The control slide calee for the rear serio:

This makes possible progressive gearchanges from 2nd to 3 rd or from 3rd to $2 n d$, depending on vehicle speed.

DBW VEHICLES All types

I. ADJUSTMENT OF BRAKE BANDS

1. Loosen the lock-nuts.
2. Tighten the screws (1) and (2) to $7 \mathrm{~m} / \mathrm{N}$ $(0,7 \mathrm{mkg})$, then loosen then $3 / 4$ of a turn.
3. Hold the screws, and tighten the lock-nuts to $45 \mathrm{~m} / \mathrm{N}(4,5 \mathrm{mkg})$.

II. ADJUSTMENT OF KICK-DOWN CABLE

1. Make sure that height of the accelerator pedal is correct and that the butterflies of the carburettor (or the air valve on $D . I E$ vehicles) are closed. .
2. Pull the cable (6), then allow it to return slowly to its position.

3. At this point, with the cable under tension but not stretched, the holes for the coupling pin (5) in the fork-end (3) of the cable and in the lever (4) should be in line : the pin (5) should be "free".

If this is not the case release the lock nut (7) and adjust the endpiece (8) in the appropriate direction.

III. ADJUSTING THE SELECTOR

1. Adjust the selector cable :

a) Remove the coupling pin (3).
b) Place the selector lever in position " 1 " and pull the cable using the fork end (2) until it reaches the last notch of the locking mechanism.
c) At this point, the holes for the coupling pin (3) in the fork-end (2) of the cable and in the lever (4) of the selector should be in line : it should be possible to fit the pin (3) 'free" If this is not the case, turn the adjusting nuts of the sheath (1) endpiece in order to bring this about.
d) Fit the pin (3) and a split pin.
e) Make sure that the selector lever can be moved to position " P ".

2. Check the position of the manual control valve :

a) Drain the gearbox and remove the lower inspection plate.
b) Put the lever in poivition " N " (neutral).
c) Under the selector block, check the position of the 2nd machined face " b " of the valve (6) in relation to the bearing " α " of the selector bloc :

The visible section " d " of the face should be equal on both sides of the bearing.
d) If not, loosen the fork-end (5) and fit the valve (6) correctly in place. Re-tighten the fork-end.
c) Fit the lower inspection plate. Fill the gearbox/torque converter assembly with the correct amount of oil.

iv. ADJUSTING THE SWITCH FOR THE STARTER MOTOR AND THE REVERSING LIGHTS.

Manual 814-1
Use an ohmmeter or a check lamp.

1. Place the selector lever in position " D " "2" or " 1 '
2. Tighten the switch (1) until the current no longer passes between the two narrowest terminals of the switch :

- When this point has been reached, tighten the switch by $\frac{1}{2}$ turn.
- Tighten the lock nut.

3. Checking the adjustment :

a) Place the selector lever in position ' R " (reverse) : the current should pass between the two widest terminals (reversing lights illuminated).
b) Place the selector lever in position " P " (parked) or " N " (neutral) : the current should pass between the two narrowest terminals of the switch (starter solenoid activated).
c) Place the selector lever in position ' D " "2" or "1" : the current should not pass between any of the terminals of the switch.
D. $35-53 \mathrm{~b}$

v. ROAD ChECKS

A Checking switch on geerbex. Place the selector lever in the following positions:

- In positions " P^{\prime} or " N " : the starter motor can be operated.
- In positions "R, D, 2 or 1" : the starter motor cannot be operated
- In position " $\mathrm{R}^{\text {" }}$: the reversing lights should illuminate.

B) Checking gear selection in the difforent ranges of use.

10 / Place the lever in position " D ":
a) When the accelerator is slightly depressed, the engagement of 1st - 2nd gears and 2nd - 3rd gears should take place at low speeds without any.jolting.
The more the accelerator is depressed, the higher are the speeds at which the gear changes should take place.
When the pedal is completely depressed in the "kick-down" position, these apeeds should be :

- $60-65 \mathrm{~km} / \mathrm{h}(37-40 \mathrm{mph})$ when the change from lst to 2 nd gear occurs.
- 115-120 km/h (72-75 mph) when the change from 2 nd to 3 rd gear occurs.
b) With the car travelling at constant speed, check the speed at which a change-down provoked by using the kick-down device, takes place (accelerator pedal fully depressed.) Depending on the gear, this speed should be less than :
- 100-105 km/h (62-65 mph) when the change from 3rd to 2nd gear occurs.
- $50-55 \mathrm{~km} / \mathrm{h}$ (31-33 mph) when the change from 2nd to lst gear occurs.
c) With the car travelling at $80 \mathrm{~km} / \mathrm{h}(50 \mathrm{mph})$, release the accelerator pedal and move the selector lever to position " 2 " : the gearbox should change down automatically to 2 nd gear (engine brake)
d) With the car travelling at $80 \mathrm{~km} / \mathrm{h}(50 \mathrm{mph})$, release the accelerator and move the selector lever to position " 1 " : the gearbox should change down to second gear (engine brake). On continuing to slow down, it should change down automatically to lst gear when the speed drops below $50 / 55 \mathrm{~km} / \mathrm{h}$ ($31-33 \mathrm{mph}$) (engine brake). Accelerate again : lst gear should remained locked if the selector lever is left in position " 1 ".
$2^{\circ} /$ Place lever in position "2":

The gearbox should function as for position " D " (see § 1) : the only difference being that it is limited to gears 1 and 2.

30 / Place lever in position "1":
The vehicle should start in lst. gear, the latter will remain engaged whatever the speed of the vehicle (do not exceed maximum engine speed : 6000 rpm).

4"/ Place lever in position " P ":

Stop the vehicle on a steep slope and place the selector lever in position "P" : the gearbox should be mechanically locked thus immobilizing the vehicle.

5"/ Place the bever in position " $R^{\prime \prime}$:
Vehicle stopped, place selector lever in position "R" : the vehicle should start without jolts (no "judder").

VI. CHECKING THE OIL PRESSURE IN THE GEAR CHANGE CIRCUIT

REMOVAL.

1. Remove the spare wheel
2. Disconnect the headlamp control
3. Remove the spare wheel support bar and radiator ventilation duct assembly.
4. Remove the plug of the hydraulic circuit (at "a").

Use a $3 / 16^{\prime \prime}$ Allen key (3658 -T-C) which is included in the necessary set $3658-\mathrm{T}$)

PRESSURE CHECK

5. To do this, use the bolt and the union from set 3658-T.

Connect the union to a pressure gauge graduated from 0-16 bars ($0-230 \mathrm{psi}$).
6. IMPORTANT : During all the following operations the wheels of the vehicle should be chocked and the parking brake engaged.
7. Check the pressure with engine idling:

- Place the selector lever in position " D "
- Let the engine idle.

Under these conditions the pressure should be :

$$
3.5-5 \text { bars }(51-73 p s i)
$$

8. Check the pressure at the converter "drag" speed:-

- Leave the selector lever in position " D "
- Depress the main brake.
- Accelerate the engine until its speed stabilizes. At this speed, the pressure should be :
12.5-15.5 bars (181-225 psi)

IMPORTANT : Do not prolong this operation for more than 10 secondes, in order to avoid overheating the transmission.

RE-FITTING.

9. Fit the plug of the hydraulic circuit (at "a").
10. Fit the spare wheel support bar/radiator ventilation duct assembly.
11. Connect and adjust the headlamp control.
12. Fit the spare wheel.

Particular features

1. Tri-axe

a) vehicles $\longmapsto 3 / 1971 . \AA$ shim of 2.5 mm is placed between the protection plate and the tri-axe housing

Note : When carrying out a repair on a vehicle produced between March 1970 and March 1971, the fitting of a shim of 2.5 mm between the brake disc and the protection plate is recommended $\longmapsto \mathrm{b} / 1971$. The body of the housing has been extended ($\mathrm{L}=68 \mathrm{~mm}(2.67$).
b) Spread $200 \mathrm{a}(7 \mathrm{oz})$ of TOTAL, Multis, bearing grease on ball joints and the tri-axe $\left(300 \mathrm{~g}\left(10 \frac{1}{2} \mathrm{oz}\right)\right.$ on vehicles $\longmapsto 6 / 1971$)
c) Tightening torques :

$$
\begin{aligned}
\text { - nuts securing housing : } & \text { - aluminium tri-axe } \ldots . .85 \text { to } 110 \mathrm{~m} \backslash \mathrm{~N}(8.5 \text { to } 11 \mathrm{mkg})(61-79 \mathrm{ft}, \mathrm{lbs}) \\
& \text { - steel tri-axe } \ldots \ldots 105 \text { to } 135 \mathrm{~m} \mathrm{NN}(10.5 \text { to } 13.5 \mathrm{mkg})(76-98 \mathrm{ft} .1 \mathrm{bs})
\end{aligned}
$$

- nut for track rod ball pin

2. Vibration dampers : (on $D X, D J, D X F, D J F \longmapsto 10 / 1968)$

- Mounted on driveshafts
- Distance between centre line of grease nipple and outer face of block;
Left hand side
$55.5-{ }_{5} \mathrm{~mm}$
Right hand side
$.123-{ }_{5} \mathrm{~mm}$

Left and Right blocks are different

Marking :

$$
\begin{aligned}
& \text { R H. Block - with outer ring (welded) . marked blue } \\
& \text { L. H. Block - no ring . marked yellow }
\end{aligned}
$$

Tightening torque :
Screw securing damper half rings . $13 \mathrm{~m} \Lambda \mathrm{~N}(1.3 \mathrm{~m} . \mathrm{kg}$ ($9.4 \mathrm{ft} \mathrm{ibs)}$

SOURCE AND RESERVE OF PRESSURE

OPERATION N ${ }^{0}$ D. 390-00 : Characteristics and particular features of source and reserve of pressure for the hydraulic circuit.

 Op. D. $390-0$
I. HYDRAULIC CIRCUITS-BASIC DIAGRAMS.

VEHICLES ALL TYPES

1. $\mathrm{DX} / \mathrm{DY}$ vehicles $(\rightarrow 12 / 1967$)

2. DJ / DL / DJF / DLF vehicles (\longrightarrow 12/1967)

3. DX / DY / DXF / DYF vehicles $(\longrightarrow 12$ / 1967)

4. DJ / DL / DJF / DLF ($\longrightarrow 12 /$ 1967)

5. $\mathrm{DV} / \mathrm{DT} / \mathrm{DP}$

6. I.E. vehicles

Seven-cylinder H.P. pump.
D. 39-6

Pressure regulator and sphere.

Single-cylinder H.P. pump.
D. 39-11

II. CHARACTERISTICS.

```
1. Hydraulic circuit:
    \(\rightarrow 9 / 1966\) red fluid L.H.S. 2
    \(\longmapsto 9\) / 1966 green fluid L.H.W.
    - Capacity of circuit
```

 6 litres (10,5 pts)
 2. Reservair :

- Capacity . 5,2 litres (9,25 pts)
Between mini and maxi 1 litre (1.75 pts)

3. Seven cylinder high pressure pump (Vehicles of all types with power assisted steering)

- The pump turns at half the speed of the engine :
- Output : $2,8 \mathrm{cc}$ per turn of pump $=840 \mathrm{cc}$ per \min for 600 rpm of engine
- Sealing for pump body 150 bars (2130 psi)

4. Single cylinder high pressure pump (Vehicles with non-assisted steering)

- This pump is operated directly by the camshaft.

5. Pressure regulator :

- For single cylinder H.P. pump $(\longrightarrow-1 /$ 1969)
Marking no groove in lower part of plug
Pressures : - cut-in 100-110 bars (1420-1560 psi)
- cut - out $130=140$ bars ($1850-1990 \mathrm{psi}$)
- For 7 cylinder H.P. pump ($\longmapsto 2 /$ 1969) and for single cylinder H.P. pump :
Marking : a circular groove in lower part of plug
Pressures: cut-in 125-140 hars (1775-1990 psi)
cut - out 150-175 bars (1850-1990 psi)
- Pilot valve pressure regulator (Progressively replacing former ones $\longmapsto 4 /$ 1969)
Pressures: cut-in 140-150 bars (1990-2130 psi)
cut-out 165-175 bars (2280-2490 psi)

6. Main accumulator:

NOTE : $\longmapsto 1 / 1969$ on certain vehicles the accumulator in machined forged steel has been replaced by an accumulator in pressed steel.

- Opening and closing :

7. Pressure distributor $(\longrightarrow 12 / 1967$ all types exept $D V / D T)$

Hydraulic gear change		Manual gear change
Front suspension	Rear suspension	Front and rear suspension
4 to 7 bars	25 to 42 bars	4 to 7 bars
57 to 98 psi	360 to 580 psi	57 to 98 psi

- Valve sealing at

175 bars (2490 psi)
8. Priority valve $(\longmapsto 12 / 1967$ exrept $D V / D T$; DP)

- Calibration of slide valve return spring 110-130 bars (2560-1850)
- Sealing of slide valve 175 bars (2490 psi)

9. Security valve ($D I$)T/DP)

- Calibration of slide valve return spring 70-90 bars (995-1280)
- Calibration of pressure switch - 3/1973 55-85 bars (795-1280 psi)
- Sealing of slide valve . 175 bars (2490 psi)

D. 39.53

Pilot Valve pressure regulator.
D. $39-54$

Pressure distributor.

Vehicles with hydraulic gear change D. 39:7

Vehicles with manual change D.39.8

Priority Valve

Security valve
D. 39-5

III. PARTICULAR fEATURES.

1. Seven cylinder high pressure pump :

- tension for belts . 40 kg . (88 lhs)
- piston push rods : (lenghs : in steps of $0,1 \mathrm{~mm}$.) 28,8 to $30,5 \mathrm{~mm}$.
- clearance between piston crown (TDC) and valve. $0,5 \mathrm{~mm}$.
- tightening of nut on drive pulley $40 \mathrm{~m} / \mathrm{N}(4 \mathrm{~m} . \mathrm{kg})$ ($29 \mathrm{ft}$.lbs)
- tightening of nuts and screws securing bearing to pump body $35 \mathrm{~m} / \mathrm{N}(3,5 \mathrm{~m} . \mathrm{kg})(25,3 \mathrm{ft}$. lbs)
- tightening of securing nuts on gearbox housing 35-40 m $\lambda \mathrm{N}$ ($3,5-4 \mathrm{~m} . \mathrm{kg}$)(25 , 3 to 29 ft lbs)

Renew all seals after each dismanting.
2. Single cylinder high pressure pump:

- clearance between pump body and plug (before tightening) 0,05 to 0,09 mm.
- tightening of screws securing plug 17 to 19 mAN (1,7 to $1,9 \mathrm{~m} . \mathrm{kg}$)
(12,3 to $13,7 \mathrm{ft} .1 \mathrm{bs}$)

3. Pressure regulator:

- shims adjusting pressure regulator : thicknesses 0,25 and 1 mm .

NOTE : A thickness of 1 mm brings about a change in pressure of . . 10 bars (150 psi)

- clearance between cup and cut - in ball 0, 3 to 0,4 mm.
- tightening of nut securing control piston cylinder $30 \mathrm{~m}{ }^{\wedge} \mathrm{N}(3 \mathrm{~m} . \mathrm{kg})(22 \mathrm{ft} . \mathrm{lbs})$
- tightening of nut supporting plug . 170 to 200 mAN (17 to $20 \mathrm{~m} . \mathrm{kg}$) (122 to $144 \mathrm{ft} . \mathrm{lbs}$)
- Tubricaie threads with hydraulic fluid.

- cut in chamber: $10,30 \mathrm{~mm}$ shim brings about a change in pressure of $\ldots 3$ bars (43 psi) approx.
- cut out chamber : $10,70 \mathrm{~mm}$ shim brings aboutia'change in pressure of $\ldots 7$ bars (100 psi) approx.

5. Priority valve :

Thickness of adjusting sh	0,9 mm
Tightening of plug screw	$12 \mathrm{~m} \Lambda \mathrm{~N}(1,2 \mathrm{~m} . \mathrm{kg})(8,68 \mathrm{ft}$. lbs $)$
Tightening of plug	$\begin{aligned} & 17 \text { to } 23 \mathrm{~m} \Lambda \mathrm{~N}(1,7 \text { to } 2,3 \mathrm{~m} \cdot \mathrm{~kg}) \\ & (12,3 \text { to } 16,6 \mathrm{ft} . \mathrm{lbs}) \end{aligned}$

6. Security valve :

Thickness of adjusting shims

7. Pressure distributor:

Hydraulic gear change		Manual gear change
Front	Rear	Front and Rear
Short	Long	Long

In order to carry out these checks, the following must be used:

- 2-3-way unions (HY 453-134)
- 2 link pipes (DV 394-122)
- (ALD) rubber seals (NN 394-87a)
- (green marking for LHM fluid)
-1 pressure gauge graduated from $0-200$ bars (0-3000 psi)

IMPORTANT :

It is essential to carry out the checking operations observing the greatest possible degree of cleanliness. The components and the areas surrounding connections must be carefully cleaned before dismantling.
The operations are to be carried out with :

- The vehicle in low position
- The pressure regulator bleed screw open.
- Engine stopped,
unless otherwise instructed.

PREPARATION.

1. Make sure that :

- The H.P. pump belts are at the correct tension
- The hydraulic fluid reservoir filter is clean
- The hydraulic fluid is at the correct temperature (carry out a preliminary road test if the vehicle is cold)

2. Remove :

- Front left wing
- Plate protecting suspension mechanism

3. Put height control lever in low position :
4. Loosen the pressure regulator bleed screw.
5. Disconnect :

- Rubber overflow return pipe (1) from security valve
- Font brake feed pipe (2) from security valve

6. In the place of front brake feed pipe (2)
connect a 3 -way union A equipped with a pressure gauge B on to security valve. The union and pressure gauge remain in this position throughout all the various checks.

CHECKS

7. Checking the main accumulator.
a) Disconnect feed pipes for front suspension "a" and rear suspension "b"
By means of the plugs, block :

- end piece "c" of 3-way union.
- openings "an and "b" on front and rear suspension feed pipes.
b) - Put gear lever in neutral position. Put on handbrake and tighten pressure regulator bleetd screw
c) - Without switching on ignition, activate the the starter.
Observe the pressure gauge needle. It rises steadily, then seems to stabilize before rising again. Take a reading when the needle comes to rest. This is the inflation pressure of the main accumulator and must be between:

$$
-40_{-10}^{+5} \text { bars }\left(569+30{ }_{-150}^{+} \mathrm{psi}\right)
$$

for vehicles \longrightarrow 3/1973
-60_{-10}^{+}bars $\left(853 \begin{array}{l}+30 \\ -150\end{array}\right.$
for vehicles $\longmapsto 3 / 1973$

8. Checking pressure regulator :

Block end-piece "d n of 3 -way union and openings "an and "c" of front and rear suspension feed pipes.
a) Cut-out.

Start the engine, with the pressure regulator bleed screw tightened and the vehicle in low position.

Observe the pressure qauge neeतle. When it ceases to rise, it indicates the maximum cut-out pressure.

Switch off the engine.
Observe the pressure gauge needle and note the drop in pressure in the next 3 minutes.

If the fall in pressure is greater then 10 bars (150 psi), check again. If the result is the same, the pressure regulator is faulty.

Replace it or repair it.
b) Cut-in

Start the engine.
When the cut-out operates, slightly open the pressure regulator bleed screw. The pressure gauge needle drops slightly, then rises again when the high pressure pump begins to work.

The minimum value shown by the pressure gauge needle corresponds to the cut-in pressure.

9. Checking security valve.

By means of the plugs, block the end-piece $« d »$ of the 3-way union and openings "a" and "c" of front and rear suspension feed pipes. Start the engine.

When cut-out pressure has been reached, observe end-piece "b" of overflow return pipe from security valve.

If there is a slight amount of seepage, the security valve is working properly.

If there is a heavy discharge of fluid, the security valve must be replaced.

10. Checking the slide-valve of the security valve.

By means of plugs block :

- the end piece "c" of the three way union
- an opening "an of the suspension feed pipe

Tighten the pressure regulator bleed-screw
Switch on and activate the starter to allow the engine to turn.

Fluid must begin to escape by the free opening "b) when pressure rises between 70 and 90 bers (995 and 1280 psi)
11. Checking the brake contral valve.

By means of plugs, block :

- Both openings $" a n$ and $" b n$ of the feed pipes for front and rear suspension.

Connect the brake feed pipe to the end piece " $\mathrm{d} n$ of the three-way union.

Start the engine.
Tighten the pressure regulator bleed screw.

After the cut out wait 10 seconds for the pressure to stabilize then switch off the engine.

Note the pressure drop on the dial gauge in the next three minutes.

If pressure drop exceeds 10 bars (150 psi) check a second time. If the result is the same the control valve is faulty.

Repair it or replace it.

12. Checking a brake pressure switch.

a) By means of plugs stop the openings of the feed pipes for front suspension "a" and rear suspension "b".
Connect the brake control valve feed pipe to end piece "cn of the three way union. Tighten the pressure regulator bleed screw.
Start the engine to obtain the cut-in pressure then switch off.
Operate the brake pedal until the pressure warning lamp remains illuminated.
b) At the same time pressure gauge reading must be between :

- 55 and 75 bars (783 and 1351 psi)
for vehicles \rightarrow 3/1973
- 75 and 95 bars (1067 and psi) for vehicles $\longmapsto 3 / 1973$
If the lamp does not come on between these readings, change the pressure switch.

13. Checking the front suspension
a) Stop by means of plugs :

- Opening "b" of the rear suspension feed pipe
- End-piece "c" of the three way union connect the front suspension feed pipe to the security valve.
Tighten the bleed screw
Put height control lever in normal running position
Allow the engine to turn until front of vehicle rises and cut out occurs wait 10 seconds for the pressure to stabilize then switch off.
b) Observe the pressure drop on the dial gauge. If it exceeds 10 bars (150 psi) within the next three minutes, a new check is necessary. If need be, check the following components to determine which one is leaking:
- the front suspension cylinders (one or both)
-the front height corrector.
Find out which component is faulty by process of elimination.
c) To check a suspension cylinder, stop its feed pipe by means of a plug and check as described above. Note the pressure drop on the gauge.
The leakage from the cylinder is calculated by taking the difference between the total leakage (noted in paragraph 13 b) when the whole front suspension is under pressure and the leakage of the cylinder alone. It must not bring about a pressure drop exceeding 10 bars (150 psi) within three arisutes. If it does, the cylinder is faulty.

d) To check the height corrector block the suspension cylinder feed pipes by means of plugs. The leakage observed is that of the height corrector, and should not bring about a drop in pressure of more than 10 bars (150 psi) in three minutes.

14. Checking the rear suspension.

a) Block by means of plugs - opening (2) feeding front suspension - end-piece (3) on 3 -way union, feeding brake control valve.

- union feeding rear brake (1).

Eliminate the power assisted steering by inserting a foil between the sealing plate and flange, thus blocking the feed openings. Disconnect rear suspension feed pipes (4) and (5) from power assisted steering union (6)

Connect the feed pipes to a 3 -way union A, and block the third opening with a plug.

Tighten the bleed screw.
Put the height control lever in normal running position allow the engine to turn until the front of the vehicle rises and cut-out occurs. Wait ten seconds for the pressure to stabilize then stop the engine.
b) Observe the drop in pressure on the dial gauge. If it exceeds 10 bars (150 psi) in 3 minutes, check again. If the result is the same, find out which component is faulty by using the following method.
$\left.1^{\circ}\right) \mathrm{On}$ vehicles $\longrightarrow 121967$.
Block rear brake feed union (7).
To check rear right cylinder, block union (8)
To check corrector, block opening (9) on corrector.

The leakage from rear left cylinder cannot be measured, but must be calculated by taking the difference between the total leakage (corrector and cỳlinder) and the leakage from the corrector alone.
$\left.2^{\circ}\right)$ On vehicles $\longmapsto 3 / 1967$.

Block rear brake feed union (3)
To check rear right cylinder, block union (2)
To check rear left cylinder, block union (1)
To check height corrector, block opening "a"
15. Checking the power assisted steering.
a) Block, by means of plugs :

- End piece "b* on 3-way union
- Opening "d» feeding the front suspension
- End piece "c" on 3-way union feeding the rear suspension.
Connect the feed pipe for the rear suspension and the security valve on to the security valve.
Tighten the pressure regulator bleed-screw and put the height control lever in normal running position.
Allow the engine to turn until cut-out occurs
then wait 10 seconds for the pressure to stabilize before stopping the engine.
b) Note the drop in pressure on the dial gauge. If it exceeds 10 bars (150 psi) in 3 minutes, repeat the check.
c) If repair is necessary, find out whether the leak is in the rotating union on the rack contral
Do this by a process of elimination :
Block the feed to the rack control by inserting a foil between the housing and the sealing plate.
Carry out the check again. If there is a leak it can only be due to a faulty rotating union.

16. Simplified check of control valve.
a) Disconnect the brake rubber return pipe from the hydraulic reservoir.
Attach a transparent plastic tube to the end of the pipe.
Start the engine and put the height control lever in normal running position.
b) When the vehicle has reached normal height, depress the brake pedal until fluid appears in the transparent tube.
Release the pedal and observe the fluid level which should remain pratically stable. If there is a rapid rise in the level, the control valve must be replaced.

VEHICLES ALL TYPES

Checking the initial pressure of a suspension sphere or a brake accumulator

NOTE : To carry out this operation make use of test bench 2290 T for vehicles using synthetic hydraulic fluid LHS2 (Red marking) and bench $3654 T$ for vehicles using mineral fluid LHM (green marking)

1. Fit union (2) on to the sphere by inserting a ring seal (marked white)
This union is supplied as a part of the test bench kit.
2. Connect union (2) on to test bench pump by means of a pipe (1) (without marking for LHS2. With green marking for LHM)
TAKE CARE : Make use of accessaries and gauges corresponding to each hydraulic fluid specification.
3. Read the figure stamped on the sphere plug which indicates the inflation pressure.
4. Tighten the pump bleed screw "a». Operate the pump to build up the pressure while observing the gauge : the pressure will not rise appreciably at first but will then rise rapidly and remain steady at a figure which is the inflation pressure.

NOTE :
At a temperature of $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
the pressure should be :
a) Suspension spheres :

- Saloons

Front spheres $\quad 59+\underset{-15}{2}$ bars $(840+30 \mathrm{psi})$
Rear spheres $\quad 26 \begin{array}{r}+2 \text { bars }(370 \\ -10\end{array} \quad 30$ psi)

- Safaris

Front spheres
Rear spheres $\quad 37 \begin{aligned} & +2 \\ & -10\end{aligned}$ bars $\left(526+30\right.$ $+150^{\text {psi })}$
b) Main accumulator :

Vehicles all types... 65_{-15}^{+}bars $\left(924{ }_{-220}^{+} 71 \mathrm{psi}\right)$
(rxcept DV-DT-DP)
$\begin{aligned} D V-D T-D P & \longrightarrow 3 / 1973: 40_{-10}^{+}{ }^{2} \operatorname{bars}\left(569_{-150^{+}}^{+30} \mathrm{psi}\right) \\ & \longmapsto 3 / 1973: 60^{+}{ }_{-10}^{2} \operatorname{bars}\left(853_{-150}^{+30} \mathrm{psi}\right)\end{aligned}$
c) Brake accumulator:

Vehicles all types 40 ± 2 bars (569 ± 30 psi)
(Except DV-DT-DP)
5. Allow the pressure to drop by unscrewing the pump bleed screw "an remove test pipe (1) and union (2)

FRONT AXLE

OPERATION NOD 410-00: Characteristics and particular features of front axle
Op. D 410.00

	VEHICLES ALL TYPES
1. CHARACTERISTICS (on vehicles)	
1. Caster	
Caster angle........ $1^{10} 30^{\prime}$
2. Camber	
Difference between left side and right side 15' MAX.
Distance between anti=roll bar bearing and suspension control lever bearing	
- L.H. side 199 mm
- R.H. side 198 mm
3. Wheel alignment	
Toe-in 2 to 4 mm

II. PARTICULAR FEATURES.

PIVOT

Do not clean the pivot assembly by immersion
The pivot bearings can only be replaced by using a special tool.
Tightening torque for nut of upper pivot ball on arm :....... 85 to $100 \mathrm{~m} \wedge \mathrm{~N}(10 \mathrm{~m} \cdot \mathrm{~kg})$ ($72 \mathrm{ft} . \mathrm{lbs}$)
Tightening torque for nut of lower pivot ball on arm :....... $100 \mathrm{~m} \Lambda \mathrm{~N}(10 \mathrm{~m} . \mathrm{kg})(72 \mathrm{ft} .1 \mathrm{lbs})$
Tightening torque of nut locking pivot bearings :............ $980 \pm 390 \mathrm{~m} \Lambda \mathrm{~N}(100 \pm 40 \mathrm{~m} . \mathrm{kg})(720 \pm 290 \mathrm{ft} . \mathrm{Ibs}$.
Tightening torque for lower ball pin nut on pivat:.......... $390 \mathrm{~m} \Lambda \mathrm{~N}$ ($40 \mathrm{~m} . \mathrm{kg}$.) ($290 \mathrm{ft} . \mathrm{Ibs}$)
Because of the high tightening torque, it is not possible to refit the ball joint on the vehicle without destroying the pivot and linkage.

Select the thickness of the adjusting shim for the lower pivot ball with precision.
The adjusting shim for the upper pivot is sold paired with the bearing assembly and races.
Do not fit the upper ball cup under a press or by blows, to avoid damaging the pivot.

III. CHECKING THE CASTER

1. Case 1: using luminous projection or level tool:
Follow the makers instructions;
the caster should be: 1030'
2. Case 2 : using tool 2321-T
a) Fix the two track gauges A and B anto the' arms of the axle in such a way that the machined dovetail at " a " on the gauge B is parallel to the axis xx^{\prime} of the arms, the shoulder (b) towards the rear.
b) Using a caliper square, measure " c " parallel to the axis of the arms : to check this, pivot the caliper square, the dimension " c " is the smallest of the measurements read from the sliding gauge.
This measurement should be $25 \pm 0.25 \mathrm{~mm}$

HALF AXLE

1. Removal

The suspension piston rod can only be freed when the pin holes in the rod and the lever are in line. To bring them in line it is necessary to press on the arm.

2. Assembly

Tighten the screws holding the half-axle to between 70 and $90 \mathrm{~m} \Lambda \mathrm{~N}(7 \mathrm{to} 9 \mathrm{~m} . \mathrm{kg})(50$ to 65 ft .Ibs.)
Anti-roll bar : lateral position is obtained by moving the right hand stop to $110 \pm 0,5 \mathrm{~mm}$ between the outer face of the boss holding the anti-roll bar knuckle on the right-hand side.

Tighten the anti-roll bar bearings to \qquad $12 \mathrm{~m} \Lambda \mathrm{~N}(1,2 \mathrm{~m} . \mathrm{kg})(8,68 \mathrm{ft} . \mathrm{Ibs}$.

The bar should be able to turn without an effort greater than : 40 to $60 \mathrm{~m} \Lambda \mathrm{~N}(4-6 \mathrm{~m} . \mathrm{kg})(29-43 \mathrm{ft} . \mathrm{Ibs}$.
End float of the bar \qquad 0,5 to 1 mm

To connect the anti-roll bar to the suspension cylinders, proceed as indicated in the corresponding operation to obtain a centre distance between the lever ball and the anti-roll bar of 198 mm on the right-hand side and 199 mm on the left-hand side.

3. Fitting

The outer face of the rear joint of the upper arm should be at $6,25{ }_{-0,5}^{+0} \mathrm{~mm}$ from the outer face of the bearing inner cup.

The outer face of the front joint of the upper arm should be at $2,5 \pm 0,25 \mathrm{~mm}$ from the outer face of the support bracket.

Tighten the nuts securing the upper and lower arms to : $90 \mathrm{~m} \Lambda \mathrm{~N}(9 \mathrm{~m} . \mathrm{kg})(65 \mathrm{ft} . I b s$.

Then loosen by $1 / 12$ th of a turn.
Adjust the easter angle using gauge 2321-T. The reading on this gauge should be between 24.75 and 25.25 mm (on the half axle which was removed).

REAR AXLE

OPERATION No D. 420-00 :Characteristics and particular features of rear axle

1. CHARACTERISTICS

VEHICLES OF ALL TYPES

1. Camber (not adjustable)

- Difference between L.H. Side and R.H. Side .. $0^{\circ} 15$
- Angle

2. Wheel alignment

- Toe-in (not adjustable

0 to 2 mm

3. Hub

D.IE VEHICLES - ALL TYPES

The suspension of the cars equipped with electronic fuel injection system is similar to that of the other vehicles with the exception of the following points:
$\left.1^{\circ}\right)$ Size of tyres :
Front and rear . 185 HR 383 XAS
Inflation pressures front wheel 2 bars (29 psi)

$$
\text { rear wheel } 1,8 \text { bars (} 26 \text { psi) }
$$

$\mathbf{2}^{\circ}$) Suspension Spheres and Dampers :

a) Vehicles produced up to Deermber 1970

The spheres and dampers are modified :

- the dampers cannot be repaired : the central shaft is sealed
- the dampers are fixed to the spheres by threaded rings

Manual 814-1

NOTE : Thęse .ampers are distinguished by 2 marks at a an, diametrically opposed. The front dampers are distinguished from the rear ones by :

- an additional washer valve " $\mathrm{c} n$, of smaller diameter on the front dampers
- a shoulder "b* in the central hole of the rear damper
b) Vehirles produced since December 1970

The dampers are sealed in the spheres : these two components cannot be separated.
The sealed damper-sphere units are interchangeable with the old parts on condition that two identical spheres are fitted on the same axle.

3°) Adjusting of heights:

NOTE : The heights are measured between the under-face of the anti-roll bars and the plane on which the wheels are resting:
Front height $=235 \pm 3 \mathrm{~mm} \quad$ Rear height $=355+10 \mathrm{~mm}$

1. CHARACTERISTICS.

1. Spheres

a) Inflation pressure :

$$
\begin{aligned}
& \text { Saloon : front }=59 \begin{aligned}
+2 \\
-15
\end{aligned} \text { bars }(860+28 \mathrm{psi}) \\
& \text { rear }=26+2 \text { bars }\left(380 \begin{array}{l}
+28 \\
-150
\end{array} \quad \mathrm{psi}\right) \\
& \text { Safari : front }=59 \begin{array}{l}
+2 \\
-15
\end{array} \text { bars }(860+28 \text { psi) } \\
& \text { rear } \left.=37 \begin{array}{l}
+2 \\
-10 \text { bars }(540
\end{array}+28 \mathrm{psi}\right)
\end{aligned}
$$

b) Securing of dampers :

Vehicles produced up to Decomber 1970: The central shaft of the damper is screwed into the bady of the sphere.

- Vehicles produred since leccmber 1970: The damper is sealed in the sphere: these two components cannot be separated.

2. Dampers :

a) Vohicles produced up 10 Derember 1970: These dampers can be removed and repaired

b) Vohicles produred since Ieccomber 1970: The damper is sealed in the sphere and cannot be repaired: if it is defective, the damper-sphere unit must be replaced.
The new components are interchangeable with the old ones, on condition that two identical spheres are fitted to the same axle.

3. Cylinders :

a) Diameter of cylinders and pistons:

- front (all types) and rear (saloon) . 35 mm
- rear (safari) . 40 mm
b) Sealing check pressure of cylinders . 40 bars (580 psi)

4. Type pressure : See $O p . D .000$

5. Adjusting the heights:

NOTE : The heights are measured between the under-face of the anti-roll bars and the plane on which the wheels are resting.

Vehicles	Front Height	Rear Height
D. all types	$235 \pm 3 \mathrm{~mm}$	$335+10 \mathrm{~mm}$
Safari	$235 \pm 3 \mathrm{~mm}$	$350+10 \mathrm{~mm}$

II - PARTICULAR FEATURES

1. Pre-ajustment of the heights :

At the front, use gauges MR 630-51/3
At the rear, position the two arms so that there is a distance of 35 mm between the upper face of the cup and the rubber stop.

2. Adjusting of the anti-roll bar

Distance between stop clamp and inner face to pivot boss, R.H. end. $110 \pm 0,5 \mathrm{~mm}$
Clearance between L.H. stop clamp and lower bearing when R.H. stop
clamp is in contact with R.H. bearing . 0,5 to 1 mm
Tightening the bearings of the anti-roll bar : remove 0.2 mm of the specified thickness of the shims Tightening torque for anti-roll bar clamp u-bolt nuts $12 \mathrm{~m} \Lambda \mathrm{~N}(1,2 \mathrm{mkg}) 9 \mathrm{ft} \mathrm{Ibs}$)
Force required to turn anti-roll bar . 4 to 6 kg (9 to 13 Ibs) applied on ball joint

3. Suspension spheres:

Tightening torque for front L.H. spacer $50 \mathrm{~m} \Lambda \mathrm{~N}(5 \mathrm{mkg})(36 \mathrm{ft} \mathrm{Ibs})$
Tightening torque for screw securing suspension cylinder Hand tight
Tightening torque for correcponding lock nuts. $19 \mathrm{~m} \Lambda \mathrm{~N}(1,9 \mathrm{mkg})(14 \mathrm{ft} \mathrm{lbs}$)
Tightening torque for dampers (torque wrench) \rightarrow Dec. $/ 1970.15$ to $17 \mathrm{~m} \Lambda \mathrm{~N}(1,5$ to $1,7 \mathrm{mkg})(11 \mathrm{to} 12 \mathrm{ft} \mathrm{Ibs}$)

1625

1533

I - PRE-ADJUSTMENT OF THE FRONT HEIGHTS

1. Connect the height control rod (2) to lever (1) and to fork end (3) on the corrector control bar, the manual height control lever being in the low position.
2. Place the manual height control lever in the high position. Make sure that the corrector valve is fully open and check this by trying to push it forwards with a screw driver levering against the wheel arm bracket rib.

NOTE: Never lever against the corrector as this would cut the rubber cup.
3. Put the gauges MR630-5V 3 in position. The shorter gauge B in the wheel hub; the longer one A in the bore "an" of the steering relay.

By means of two jacks (one under each lower arm) raise the arm assembly to bring the shorter gauge to a distance "b" of 185 mm from gauge A .

Ensure that there is a clearance of about 1 mm between the bottom of the fork on the control lever and the corrector ball-pin; if not, move the control rod on the anti-roll bar (spanner : 1677-T).
Remove gauges MR 650-51/3.

II- PRE-ADJUSTMENT OF THE REAR HEIGHTS

4. Position the two arms so as to obtain a distance "c" of 35 mm between the upper edge of the cup for the rubber stop (4) and the thrust face of the steel stop.
5. By means of the control rod, put the height corrector in the fully open position. Tighten the clamp (spanner 1677-T for the screws with flats).

III - ADJUSTMENT OF THE HEIGHTS

In order to carry out this operation, the vehicle must be in running order.
Place the height control lever in "normal" posiposition.
6. Check the tyre pressures: See Op. D. 000
7. Place the car on a lift or over a pit. Allow the engine to idle. Release the parking brake. Do not chock the wheels.

8. Adjust the front heights

Slightly loosen the clamp screw (1) securing the height corrector control rod. Operate the clamp in the required direction to obtain an average height of :

$235 \pm 3 \mathrm{~mm}$

This measure is taken from the undersi de of the anti-roll bar to the surface on which the wheels are resting. The height of the car is increased or decreased as the clamp is turned turned either towards the front or the rear. Tighten the clamp screw (1) (spanner 1677 (spanner 1677-T).
9. Check the front heights
a) Place a straight rod resting on the edges of of the lift or pit exactly below and parallel to the anti-roll bar. The lower part of the rod must be exactly level with the surface on which the wheels are resting.
b) By taking the front bumper in both hands lift the front of the car until the weight prevents any further raising. Let go when this point is reached. The car lowers then rises and stabilizes. At this moment measure, on both sides of the vehicle, the distance between the underside of the anti-roll bar and the surface on on which the wheels rest. The difference between these two measurements must n not exceed 3 mm . If it does, operate the threaded sleeve of the anti-roll bar. Take the average of the two distances which may be, for example, 236 mm .

d) Lower the car by pressing on the rear bumper. Let go when resistance is felt.
The vehicle rises then lowers and stabilizes.
c) Lower the car by pressing on the front bumpers. Let go when resistance is felt.
The car rises then lowers and stabilizes
Measure on both sides of the vehicle the dis-
tances between the underside of the anti-roll
bar and the plane on which the wheels are resting. Take the average of the two measures. For example : 232 mm .
Take the average of the figures determined in paragraphs b and c:
For instance, in the example chosen :

$$
\frac{236+232}{2}=234 \mathrm{~mm}
$$

This average must be between :

$$
232 \text { and } 238 \mathrm{~mm}
$$

If it is not,repeat the operations described in paragraph 8.

10. Adjust the rear heights :

Proceed as for adjusting the front heights (see paragraph 8) after having removed the corrector control shield (inside the boot).

Operate on the clamp (1)
The height to obtain from the underside of the anti-roll bar to the ground is :

- Daloon all types (except (E) :

$$
\text { - D.IE all types : } \quad 335+.10 \mathrm{~mm}
$$

- D Safari:

$$
350+10 \mathrm{~mm}
$$

11. Check the rear heights :
a) Place the straight rod resting on the edges of the lift or pit exactly below and parallel to the anti-roll bar.
b) Remove the rubber plug from the floor
c) Raise the car by taking the rear bumper in both hands. Let go when the weight prevents any further raising.
The vehicle lowers then rises and stabilizes At this moment measure the distance between the underside of the anti-roll bar and the plane on which the wheels are resting. (Insert the locating rod through the hole "a" in the floor, the end resting on the anti-roll bar).
Let this distance be, e.g. 347 mm .

12. Adjusting the manual height control rods:

Place the manual control in normal running position.
a) At the front check that there is a clearance "an with the corrector valve in full inlet position (lever (1) pushed towards the front) as well as a clearance "b" with the corrector valve fully open in the exhaust position, lever (1) pushed rearwards). Clearance measured between the lever (5) (5) and the nut.

Operate the control rod (2) if necessary.
b) At the rear, make sure that there is a clearance "c", with the corrector valve in full inlet position (lever (5) pushed forwards) and a clearance "dn with the corrector valve fully open in the exhaust position (lever (5) pushed towards the rear) clearance measurted between the lever (5) and the nut.
If necessary, adjust the nuts (3) and (4).
c) Check the functioning of the manual height control. Ensure in particular that the control levers do not touch the body. If they do, adjust the position of the control bearings.

NOTE :
If it is not possible to adjust the heights by operating the control rods, carry out the preadjustment of the heights (as explained in paragraphs 1 to 3 of same operation for the front and 4 to 5 for the rear).

1687

$\times 51$

13. Adjust the lateral position of the anti-roll bar
a) Remove the lateral and lower mudshields.
b) Measure the distance (h) between the stop clamp (1) and the inner face of the right hand ball pin securing boss.
This distance can be measured by placing a straight rod on the boss, holding it in the hand, while checking the distance (h) by means of a rule (between the stop clamp and the outer face of straight rod).
If necessary, operate the stop in the apropriate direction to obtain distance (h) $=$ $110 \pm 0,5 \mathrm{~mm}$. Tighten the clamp securing screw.
14. Adjust the end float of the anti-roll bar Push the bar to bring the right hand clamp into contact with the right hand half shell. Position the left hand clamp to obtain a clearance " k " $=0,5$ to 1 mm between it and the lower left hand half shell.
To do this, remove the front height corrector.
15. Adjust the half shells on the anti-roll bar
a) Place the half shell on the bar as shown in the illustration. Holding it in this position, measure clearance (1) using a set of feelers let $\mathrm{j}=1,80 \mathrm{~mm}$. (for example).
NOTE : the half shells are assembled so that they grip the bar lightly. Choose amongst the shims sold by the spare parts department those which give a thickness equal to : $\frac{j-0,2}{2}$ that is, in the above example :

$$
\frac{1,80-0,2}{2}=0,8 \mathrm{~mm}
$$

b) Smear the half shells with graphite grease and fit the bearing caps.
Insert the two above mentioned shims between cap and bearing.
c) Tighten the R.H. bearing cap nuts to $12 \mathrm{~m} \Lambda \mathrm{~N}$ $\left(1,2 \mathrm{mkg}-8,7 \mathrm{Ft}\right.$ Ibs). Check the leverage :e- ${ }^{-}$ quired to rotate the anti-roll bar which should turn under a force of 2 to $3 \mathrm{~kg}(41 / 2$ to $61 / 2$ Ibs) exerted upon the ball-joint. If it does not, change the shims for some of suitable thickness.
d) Tighten the nuts on L.H. bearing caps to 12 $\mathrm{m} \Lambda \mathrm{N}(1,2 \mathrm{mkg}-8,7 \mathrm{Ft} \mathrm{Ibs})$. Check the leverage so that the anti-roll bar turns as in (c) under a force of 4 to 6 kg (9 to 13 Ibs). If necessary. change the shims as above.

16. Fit the height corrector

17. Fit the lower mudshield

V - adjusting the manual height control

X. 55

18. Position front linkage rod (6) correctly in relation to relay lever (9).

Determine in the rod the corresponding hole "a" to obtain a clearance $j=7,5 \pm 1,5 \mathrm{~mm}$ If no adjustment is possible by using the holes in the rod (6) move the quadrant adequately in its slots.
19. Position rear linkage rod (14) in relation to relay lever (9)

Find out which hole "a" will give clearance "h" $=8 \pm 1,5 \mathrm{~mm}$
If this measure cannot be obtained with the holes in the rod (14). screw up or unscrew the fork (16).
20. Fit the connecting pin for the rods (6) and (14) to lever (9). Turn over the lock as shown in cross section A.

21: Lubricate the pivoting points and bearings (15) of the rod (14) (universal joint grease).
22. Adjust the lateral position of the front torsion rods. The end piece (1) of the rod must be within 1 mm approximately in the centre of the holes in the arm body.
If necessary, move the rod ofter loosening clamp (12)
23. Adjust the lateral position of the rear torsion rods end-piece (18) must be parallel to the body

$$
\mathrm{m}=\mathrm{n}+1 \mathrm{~mm}
$$

Move the rod, if need be after loosening clamp (4)
24. Adjust the control lever

With control lever (11) in the low position, distance c must be $10_{-0}^{+5} \mathrm{~mm}$ between control lever ball and the side-member trimming.
If not, set the lever (11) to obtain this measure.
25. Check that nothing prevents the front and rear torsion rods from being placed in low or high position.
26. Check the adjustment of the corrector control levers (1) and (17).

1465

NOTE: In the low position the suspension spheres must be free.
In the high position the rubber stops are compressed.
The distance between the base of rubber stop and thrust face of sheet- metal buffer must be :

$$
\begin{aligned}
& \mathrm{d}=6 \mathrm{~mm} \text { maximum at the front } \\
& \mathrm{e}=8 \mathrm{~mm} \text { maximum at the rear } .
\end{aligned}
$$

VEHICLES ALL TYPES

A. STEERING WITH HYDRAULIC RACK CONTROL

Vehicles all types (optional on $D V^{\prime}$ and $D T$ vehicles

1. CHARACTERISTICS

II. PARTICULAR FEATURES

Adjustments on the vehicle :

Lateral position: distance between the L.H relay centre line and the centre line of the rack pressure plug measured perpendicular to the centre line of the vehicle: $\quad a=122,5 \pm 2,5 \mathrm{~mm}$
Adjusting the alignment : toe-in $=2$ to 4 mm . Adjusting the straight ahead steering position: this operation is carried out on the road.
Adjusting the lock angle : 42°
Distance between the centre line of the ball pin on steering lever and centre line of track rod flexible bush : c $=402 \mathrm{~mm}$. (see illustration page 3)
Tightening torque for nut securing ball pin on stee ring lever :
$40 \mathrm{~m} \wedge \mathrm{~N}(4 \mathrm{mkg}-29 \mathrm{ft} \mathrm{Ibs})$
Tightening torque for nut (3) of steering pinion bearing :

$$
50 \mathrm{~m} 1 \mathrm{~N}(5 \mathrm{mkg}-36 \mathrm{ft} \mathrm{Ibs})
$$

Tightening torque for control rod on the rack :
$70 \mathrm{mAN}(7 \mathrm{mkg}-50 \mathrm{ft} \mathrm{lbs})$
Tighten plug (1) of plunger (2) then unscrew by $1 / 6$ of a turn using tool MR 630-16/7.

Distance between rubber anti-rattle bush on rack control rod and centre line of pin:

$$
140 \pm 5 \mathrm{~mm}
$$

Tightening torque of yoke securing nut :

$$
40 \mathrm{mAN}(4 \mathrm{mkg}-29 \mathrm{ft} \mathrm{Ibs})
$$

Tightening torque for nuts securing track rods to yoke :

$$
35 \mathrm{~m} \mathrm{AN}(3,5 \mathrm{mkg}-25 \mathrm{ft} \mathrm{Ibs})
$$

Tightening torque for lock nut on the housing endpiece:

$$
100 \mathrm{~m} \mathrm{~N}(10 \mathrm{mkg}-72 \mathrm{ft} \mathrm{Ibs})
$$

Distance between tyre and mudshield :

$$
10 \text { mm maxi. }
$$

Distance of the steering rack concertinas in relation to centre line of plunger (2)

$$
\begin{aligned}
& \mathrm{LH}=56 \pm 2.5 \mathrm{~mm} \\
& \mathrm{RH}=574 \pm 2.5 \mathrm{~mm}
\end{aligned}
$$

Length of rack control rod

$$
\begin{aligned}
& \longrightarrow 7 / 1967 \ldots 460 \mathrm{~mm} \\
& \longmapsto \quad 7 / 1967 \ldots 464 \mathrm{~mm}
\end{aligned}
$$

Diameter of control piston rod

$$
\begin{gathered}
-7 / 1967 \ldots \\
\longmapsto \\
\longmapsto
\end{gathered} 1967 \ldots . . .21 \mathrm{~mm}
$$

III - IMPORTANT POINTS

1. Before doing any work on the hydraulic control of the steering, make sure that the steerinq track rod ball joints are in good condition.
To do this :
Disconnect the outer track rod ball pins from the pivot levers (use ball pin extractor 1964-T). The ball pins (on pivot lever and relay shaft) must move freely without any binding or tight point, even at the limit of their movement.
If a ball pin binds it is necessary to replace either the pivot lever or the lawer relay lever and track rod assembly or the track rod with ball pins as appropriate.

2. If the steering shows any sign of leakage

This may be due to :

1) A leakage definable by sound similar to an escape of gas.

Disconnect the rack feed pipe assembly from the end piece on steering housing. Close the flange openings with a sheet metal plate, inserting a seal plate.
a) If the leak persists, it comes from the rotating union which must be repaired or renewed.
b) If the leak disappears it came from the hydraulic rack control which must be repaired or renewed.
2) A leak causing inflation of the rubber dust cover and consequently an external leakage of fluid. This necessitates overhaul of the steering.
3. If the steering is hard in operation or when starting to turn the steering wheel to one lack or the other

1) Check that the Steering alignment is correct in the Lateral position and
Angular position
2) Adjust the crossover pressure

4: If the steering "knocksn the crossover pressure must be adiusted
The knocking may come from any of the followings :

- Excessive play of the piston and rack control rod coupling pin
- Excessive clearance of the rack plunger guide
- A tight spot in the slide valves or the dash-pots.

In these cases, overhaul of the steering must be carried out.
5. If the steering "flicks" in straight line running: (see illustration page 1)

1) Check the crossover pressure
2) Check the assembly of pluqs (6) and cups (4)

Remove the battery and its tray
Disengage the dust cover (7) from rotating union to gain access to the plugs (6).
Release the pressure
Remove plugs (6) do not mix up the parts : each cup (4) is paired with its plug (6)
Disengage the cup and its spring (5) Check that there is no binding in the plug bore. If need be, remove any possible burr in the plug by means of a small scraper.
In the case of light scratches on the cup, a very light rubbing with abrasive paper $\mathrm{N}^{\circ} 600$ is permitted.
Carefully clean the parts.
Should the cup (4) be worn out, renew plugs and cups assembly.
Fit plug and cup assemblies together with springs. Insert a seal (8).
Tighten the plugs moderately to $10 \mathrm{~m} . \mathrm{N}(1 \mathrm{mkg}-7 \mathrm{ft} \mathrm{Ibs})$ and adjust the crossover pressure.

1. ADJUSTING THE LATERAL STEERING POSITION.
2. Put the front of the vehicle on stands. (Support 2505-T)
Disconnect the negative battery terminal.
3. Remove

- the spare wheel
- the front wings
- if the battery is on the left, remove the battery, the tray and its support.

3. Slacken the screws securing the bearing caps; move the steering in its bearings so that distance:

$$
+a,=122,5 \pm 2,5 \mathrm{~mm}
$$

(Distance between the L.H. relay centre line and the centre line of the plug for the rack plunger measured perpendicular to the centre line of the vehicle).
Tighten the screws securing the bearing caps
4. Check the position of the steering wheel turn the steering wheel until distance

$$
\cdot b\rangle=275 \mathrm{~mm}
$$

(Distance between the centre line of the plug for the rack plunger and the outer bush on the L.H. track rod)

In this position, the steering wheel spoke should he at 30° below the horizontal on the L.H. side. If it is not, adjust the position of the steering wheel.

II. ADJUSTING THE ANGULAR POSITION OF THE STEERING. (Power assisted steering only)

5. When the vehicle has been placed on stands and the screws securing the bearing caps slackened, fit fixture 1955-T.
6. Move the steering in its bearings to bring the control pinion (1) in contact with the central pin "an of the fixture.
7. Tighten the screws for the bearing caps. Remove the fixture.

III. ADJUSTING THE WHEEL ALIGNMENT.

8. Put the vehicle in normal running position with the engine running.
9. Use an ordinary commercial track qauge.

Measure at wheel-centre height the distance between the wheel rims at the rear. Mark the points with chalk. Move the car so as to turn the wheels by half a turn and measure at the front on the points previously marked.
10. There must be a toe - in of between 2 and 4 mm . If not adjust the track-rod sleeve (1) first raising the front of the vehicle. Loosen the screws in the clamps of the sleeve Work by fractions of a turn ($1 / 4$ of a turn corresponds to a variation in the alignment of 1 mm). Check the alignment again;tighten the screws on the clamps to $10 \mathrm{~m} \Lambda \mathrm{~N}(1 \mathrm{~m} . \mathrm{kg})(7.2 \mathrm{ft}$ lbs). Turn the steering to full right-lock and left lock to ensure that there is sufficient clearance between the clamp screws, the front crossmember and the air intake.
NOTE : To obtain a suitable toe - in adjustment the track rods must be in good condition.
IMPORTANT : The headlamps must be adjusted after this operation.

IV. ADJUSTING THE STRAIGHT AHEAD STEERING. (Power assistedsteering only)

11. There are two possible methods: see the corresponding operation.

V ADJUSTING THE STEERING LOCK.

12. Put the front of the vehicle on stands. Remove the front right wing.
13. Place the wheels as for running in a straight line(after the straight ahead steering has been adjusted.)
14. Turn the steering wheel $1 \frac{1}{2}$ turns exactly to the left if the steering is power assisted. If it is not, turn the steering wheel 2 turns. Screw up the stop cap (3) until it contacts the rack, and tighten the locknut (2). Return the wheels as for running in a straight line.
15. If the steering is power assisted, turn the steering wheel $1 \frac{1}{2}$ turns exactly to the right. Screw up the stop cap and tighten the locknut.
16: If the steering is not power assisted, turn the steering wheel 2 turns exactly to the right.
Slacken the locknut (4). Unscrew the stop screw (5) until it contacts the steering housing, then tighten the locknut (4).
16. Replace the front right wing and lower the car to the ground.

NOTE: When the wheels are at maximum lock, there must be a clearance between the tyre and the lateral protection shields for the suspension mechanism. If necessary reduce the lock angle.

VI. ADJUSTMENT OF THE CROSSOVER PRESSURE.

(Power assisted steering only)
NOTE: Use test bench 3654-T and its accessories 3655-5 (green LHM fluid) or 2290-T (red LHS 2 fluid).
Use pressure gauges calibrated from 0 to 200 bars (0-3000 psi)
18. Release the pressure by loosening the bleed screw in the pressure regulator.
19. Place a cloth under the steering pipe assembly flange (1) R.H. side, in order to avoid spilling fluid on the brake unit. Remove the hydraulic connecting pipe assembly from the end-piece side of the casing.
20. Fit pipe assembly " A " to the connecting pipe assembly flange (1) (inserting a seal plate). Connect the ends "an and "b" of the pipe assembly " A " by means of the tubès " B " and " C " to the two pressure gauges on the test bench.
21. Start up the engine and tighten the bleed screw on the pressure regulator. Turn the steering from left to right in order to bleed the pipes on the pressure gauges.
22. Position the wheels as for running in a straight line, the straight-ahead steering position having been adjusted.
23. Turn the steering wheel very slowly to the right a or left in order to obtain a difference in pressure of about 60 bars (850 psi) between the two pressure gauges.
e.g. : - 20 bars and 80 bars (290 psi and 1137 psi) Slowly turn the steering wheel in the opposite direction and note the pressure when the two gauges show the same reading.
This pressure should be : 65 ± 5 bars (920 ± 70 psi)
24. If the pressure does not read 65 ± 5 bars ($920 \pm$ 70 psi), the pressure distributor must be adjusted. Stop the engine. Remove the batterv and its support if these are on the L.H. side. Withdraw the rubber protector (4) from the pressure distributor to gain access to the adjusting screws (2) for the slide valves. Loosen the locknut (3) of one of the screws (2)
NOTE: Do not turn the adjusting screw during the unscrewing of the locknut.
If the crossover pressure is too high, unscrew one of the adjusting screws (2) or tighten it if it is too low. (Adjust the screw by about $1 / 12$ of a turn at a time)
NOTE : Do not release the steering wheel until the pressures are stabilized, otherwise an oscillation may be set up at the steering wheel, which could ruin the pressure gauges.

B. STEERING WITH MECHANICAL RACK CONTROL

I. Characteristics

- Wheel alignment . toe-in 2 to 4 mm
- Steering reduction ratio . l/ 20
- Steering radius . Approximately 5.50 m (18 ft)
- Angle of lock . $42^{\circ} \pm 0^{\circ}$
- Number of turns from centre position . 2 turns
D. $44-40$

II. PARTICULAR FEATURES

1. Adjustments on the vehicle

Lateral position : distance between the L.H relay centre line and the centre line of the rack pressure plug measured perpendicular to the centre line of the vehicle :

$$
a=122.5 \pm 2.5 \mathrm{~mm}
$$

When the steering wheel spoke is at 30° below the horizontal on the L.H side, the distance between the centre line of the pressure plug and the outer edge of the flexible bush should be:

$$
\mathrm{b}=275 \mathrm{~mm}
$$

Toe-in
2 to 4 mm
Lock adjustment
$42 \pm 0^{\circ}$
Tightening torque for screws securing steering levers to relay spindle: $25 \mathrm{~m} . \mathrm{N}(2.5 \mathrm{mkg}-18 \mathrm{ft} \mathrm{Ibs})$

2-Repairing

Length of track rods between centre line of ball pin and centre line of flexible bush : c $=402 \mathrm{~mm}$

Tightening torque for nut securing lever on track rod ball pin : $\quad=40 \mathrm{mAN}(4 \mathrm{mkg}-29 \mathrm{ft} \mathrm{Ibs})$

Tightening torque for nut on rack plunger

$$
=50 \mathrm{~m} \Lambda \mathrm{~N}(5 \mathrm{mkg}-36 \mathrm{ft} \mathrm{Ibs})
$$

Then slacken by $1 / 6$ th of \mathbf{a} turn.
Tightening torque for nut of steering pinion bea ring :
$=50 \mathrm{~m} \mathrm{~N}(5 \mathrm{mkg}-36 \mathrm{ft} \mathrm{lbs})$
Tightening torque for nut securing centre yoke $=40 \mathrm{mAN}(4 \mathrm{nkg}-29 \mathrm{ft} \mathrm{lbs})$ Tightening torque for nuts securing track rods to centre yoke $\quad=35 \mathrm{~m} / \mathrm{N}(3.5 \mathrm{mkg}-25 \mathrm{ft} \mathrm{Ibs})$

NOTE : Before adjusting, check that the tyre pressures are correct.

I. ON THE ROAD

1. Determine the position of the steering wheel for running in a straight line :

- Travel on a straight level road.
- Attach the clamp of measuring rod MR. 630-51/63 to the L.H. sun visor spindle and stick a piece of adhesive paper on the steering wheel rim at the point of contact with the end of the measuring rod. Mark with a straight line on the adhesive paper the exact point of contact of the end of the measuring rod.

2. Stop the car.
3. Adjust the position of the cam :

- Align the marks made in § 1 .
- Loosen the securing clamp (3) of the cam and turn it until the roller (2) is in the hollow of the cam.
- Tighten the clamp to : $4 \mathrm{~m} \wedge \mathrm{~N}(0,4 \mathrm{~m} . \mathrm{kq})$ (3 FT.LBS.) Note : The roller must be parallel with the cam and in the centre of it to within 2 mm appluximately. The slot " α " allows for moving the cam.

4. Check the adjustment by a second road test.

II. IN THE WORKSHOP

5. For this operation, use a light projecting device as usually used for front and axle checks.

REMARKS :

- This process takes into account that each vehicle has its own characteristics concerning positioning of axles, toe-in, tyre drift etc. .
- The vehicle must be in good working order, without excessive play in the front axle and steering.

6. Put the vehicle on a level horizontal surface, with the wheels as straight as possible.

VERY IMPORTANT : It is imperative that the surface be absolutely level and horizontal; otherwise false results will be obtained from the operation.
7. Attach the clamp of measuring rod MR. 630-51/63 to the L.H. sun visor spindle, and stick a piece of adhesive paper on the steering wheel rim at the point of contact with the end of the measuring rod.
8. Put a projector support " A " on each of the front wheels. These supports must not be moved again until the end of the operation.
9. Place 2 graduated rulers " $\mathrm{B} \| 4$ meters in front of the vehicle.

3743-1

4180

10. Start the engine to put the circuits under pressure.
11. Put a chock (a screw driver handle, for example) under the spring rod of the steering centralising cam roller, so that the roller is no longer in contact with the cam.
12. Put the projector on its support on the left-hand wheel. Project the beam on to the ruler, and mark the point of projection " αn.
13. Repeat for the right hand wheel, marking the point of projection $" a n$.
14. Then make a chalk mark on the tyre, as shown in the illustration.
15. Put in the path of the wheels, and approximately 2 meters in front of their centre line, 2 units, each made. up of 2 metal sheets $400 \times 400 \times 1 \mathrm{~mm}$ placed on top of each other. (put a layer of grease between the plates) Creep forward in 1 st gear and stop the vehicle when the wheels have completed 1 revolution.

NOTE :

Starting and stopping should be as smart as possible. Especially if there is play in the various front axle and steering bearings.
16. On the right hand side, make a projection on the ruler (which must not have been moved).
And mark the point of projection "b ".
17. Repeat for the left hand side.
18. Various results can be obtained:
a) If the distances $\begin{gathered}\text { ab } \\ n\end{gathered}$ are approximately 7 mm (positioning clearance for straight-ahead steering). and the points "bn are outside the points " $a n$: the wheels are in the straight-ahead steering position.
Mark on the steering wheel rim the position for straight ahead steering.

4180-1

b) If the distances " $a b$ " are equal but both points " b " are on the left or the right of both points " $a n$: the vehicle deviated while moving forward. The steering must therefore be corrected by a certain angle which corresponds to a distance "bcn which is equal to the average of the two distances "ab".
e.g. : the vehicle has deviated towards the left, and the distance "ab" on the right hand side is 30 mm .
the distance " $a b$ " on the left hand side is 35 mm .
the distance "bc" should be :

$$
\mathrm{bc}=\frac{30+35}{2}=32,5 \mathrm{~mm}
$$

Turn the steering wheel (alternating from right to left to take up the play) and bring the point of projection to " c ".

NOTE: Each division on the ruler in the illustration corresponds to 5 mm .

Reverse the vehicle so that the wheels make at least $11 / 2$ revolutions, then drive forwards and stop when the wheels are in the position they were in at the start of the 1 st projection. Check by repeating the operation. If necessary, change the position of the steering wheel so as to satisfy the conditions in paragraph " α ".
c) In very rare cases, if the distances "ab" are equal but the points " b " are inside both points " αn, the wheels are in the straight ahead steering position, but their alignment is faulty (toe-out instead of toe-in), or there is too much play in the various bearings, or both are true. The vehicle must be repaired before adjustment can be made.

NOTE :

By means of indication, the distance «ab " (the points " b " being outside the points " $\alpha \|$) should be between 5 and 10 mm for a vehicle with correct toe-in and no play in the various bearings.
19. Adjust the position of the cam as indicated in § 3.

BRAKES

VEHICLES ALL TYPES EXCEPT DV-DT and DP

I. CHARACTERISTICS

Brake accumulator:
Inflation pressure :
40 ± 10 bars $(569 \pm 142$ psi)
Sealing of valve : ... 50 bars (730 psi)

- Front brake pads
FERODO 623
- Parking brake pads :
FERODO 583
- Rear brake shoes
FERODO SM
- Rear brake drums
Saloon : ... not finned
Safari
finned
- Calibration of pressure switch : .. 60 to 70 bars (880 to 1020 psi)
- Sealing of brake control : .. 150 bars (2190 psi)
- Sealing of brake pressure : ... 175 bars (2555 psi)
distributor piston

II. BRAKE PRESSURE DISTRIBUTOR PISTON.

Manual 814-1

I. CHARACTERISTICS :

VEHICLES DV, DT. DP

- Front brake pads FERODO 623
- Parking brake pads FERODO 583
- Rear brake shoes FERODO S M
Rear brake drums : not finned.
- Calibration of pressure switch
55 to 85 bars (800 to 1240 psi$) \longrightarrow 13 / 73$ 75 to 95 bars (1067 to 1351 psi) $-3 / 73$
- Sealing of brake control :
From a pressure drop in 1 minute of 140 bars : 20 bars (580 psi) maxi (2040 osi) pressure drop in 1 minute
II. BRAKE CONTROL
D. 45-1

I. PARTICULAR FEATURES

1. Discs:

- Maximum run out : .. $0,15 \mathrm{~mm}$
- Diameter : .. 300 mm
- Original thickness : .. $12 \pm 0,1 \mathrm{~mm}$
- Maximum variation of thickness : .. 0,015 mm maxi
at outer edge.
- Maximum out of flat at outer edge : ... 0 to 0.025 mm approximately

2. Original thickness of front brake pads :
3. Diameter of front brake pistons:
$60-0,023$
$-0,036 \mathrm{~mm}$
4. Parking brake :

- Clearance between disc and shoe : ... 0,1mm
- Clearance between caliper and disc : .. 4 mm
- Cable tension : clearance at adjustable : .. 0,3 to 0,5 mm cable guide stop.

5. Rear brake drums :

- Maximum regrind on diameter : ... 2 mm
- Original diameter :
$255+0,21 \mathrm{~mm}$
- Maximum out of round $0,03 \mathrm{~mm}$

6. Rear brake shoes :

- Adjust linings to just contact the drum.

7. Vehicles all types except DV, DT and DP :

- Brake pressure distributor : AT 60 bars (480 psi) the distance from the roller centre line to the rear slide valve centre line should be :
$14 \pm 0,25 \mathrm{~mm}$
- Stop lamp switch :
- When the stop lamps just go out, tighten the adjusting screw by : 1 turn.
- Clearance :

0,4 to $0,6 \mathrm{~mm}$

8. Vehicles DV, DT and DP:

- Stop lamp switch
when the stop lamps just light, unscrew the adjusting screw by
2 turns.
Brake pedal gear :
- Rear brakes applied when front brake pressure reaches
5 bars (70 psi)
- Clearance at control knob
0,1 à $0,5 \mathrm{~mm}$

II. TIGHTENING TORQUES.

1: Front brake units :

- Tighten bolts securing units on gearbox outlets to: 130 to 140 mAN (13 to 14 mkg) (94 to $101 \mathrm{ft} . \mathrm{lbs}$)
- Tighten screws securing brake units on cross member to :

40 to $45 \mathrm{~m} \wedge \mathrm{~N}$ (4 to $4,5 \mathrm{mkg}$.) (29 to 32.5 ft Ibs)
45 to $55 \mathrm{~m} \wedge \mathrm{~N}(4,5$ to $5,5 \mathrm{mkg}$.) (32,50 to $40 \mathrm{ft} . \mathrm{lbs}$) 6 to $7 \mathrm{~m} \Lambda \mathrm{~N}(0,6$ to $\mathrm{Q}, 7 \mathrm{mkg}$.) (4,34 to $5,06 \mathrm{ft} . \mathrm{l} \mathrm{bs})$

2. Parking brake :

- Tighten the screws securing the brake calipers to the clutch housing

100 to $110 \mathrm{~m} \Lambda \mathrm{~N}$ (10 to 11 mkg .) (72 to $79 \mathrm{ft} . \mathrm{l}_{\mathrm{bs}}$)
3. Vehicles all types except DV, DT and DP :

- Brake pressure distributor :

Tighten guide plug to :
20 to $25 \mathrm{~m} / \mathrm{N}$ (2 to $2,5 \mathrm{mkg}$.) (14.4 to $18,1 \mathrm{ft} . \mathrm{l}_{\mathrm{bs}}$)

- Pressure switch :

Tighten the union nut to
6 to $8 \mathrm{~m} \Lambda \mathrm{~N}(0,6$ to $0,8 \mathrm{mkg}$.)
(4,34 to $5,8 \mathrm{ft} . \mathrm{lbs}$)

- Brake pedal gear :

Tighten the bolts to :
20 to $25 \mathrm{~m} \Lambda \mathrm{~N}$ (2 to 2.5 mkg .)
(14,4 to $18,1 \mathrm{ft} . \mathrm{lbs}$)

- Brake pedal :

Tighten nut securing pedal plate to
25 to $30 \mathrm{~m} \Lambda \mathrm{~N}$ (2,5 to 3 mkg .) (18,1 to $22 \mathrm{ft} . \mathrm{lbs}$)

I. ADJUSTING THE FRONT BRAKES

1132

ADJUSTING THE HYDRAULICALLY CONTROLLED BRAKE UNIT

1. Remove

- The spare wheel
- The headlamp control cross-bar
- The spare wheel crossmember
- The air intake

2. Loosen screw (1)
3. If the pads must be replaced, fit new ones
4. Get an assitant to depress the hydraulic brake pedal.
5. Tiğhten screw (1) to 130 to $140 \mathrm{~m} \Lambda \mathrm{~N}$ (13 to $14 \mathrm{~m}, \mathrm{~kg}$) (93-6 to 101 ft Ibs).
6. Release the brake pedal.
7. Replace

- The air intake
- The spare wheel crossmember
- The headlamp control cross-bar
- The spare wheel

II. ADJUSTING THE REAR BRAKES

Centring the brake shoes.

Removal :
8. Raise the rear of the vehicle on stands (stand 2505-t)
Remove the wing and wheel on the side to be adjusted
9. Bring the shoes into contact with the drum by turning the adjusting cams in the direction shown by the arrows.
It must still be possible to turn the drum by hand
10. Remove the two screws (3) and remove the drum (2)

FITTING

11. Fit the gauge $3565-\mathrm{T}$ (see illustration)

Turn the apparatus and note the point at which the diameter of the shoes is greatest by means of arm "A". Tighten the wing nut to secure the arm in this position.
12. Loosen the locknut (1) on the eccentric bushes Position the eccentric so that the smallest "thrown is downwards.
13. Adjust the shoes by operating on the cams and the eccentrics together, so as to obtain a clearance between the arm " A " and the shoes of:
$-0,15 \mathrm{~mm}$ at points M and $M 1$
and $\quad-0,25 \mathrm{~mm}$ at points M2 and M3
Measure this clearance with feelers.
14. Tighten the nuts (1) and knock over the lock washer
Fit the drum (2) and tighten the screws (3)
15. Fit the wheel and the wing.
16. Lower the vehicle to the ground.

A. BLEEDING THE BRAKE SYSTEM

2

1. BLEEDING THE FRONT BRAKES.

Do not bleed the brake system under pressure. This prevents the formation of small bubbles in the fluid which could eventually produce air pockets in the system.

1. With the engine stopped, slacken the pressure regulator bleed screw.
2. Place the manual height control lever in the - low position.
(This operation is not necessary on vehicles produced since December 1967 nor on any DV, DT or DP vehicles).
3. On vehicles fitted with manual gearchange : Disengage the flexible tube from brake unit bleed screws.
Connect these bleed screws to the reservoir by means of a flexible tube.
4. On vehicles fitted with hydraulic gearchange:

Fit a flexible bleed tube on to :

- the rear bleed screw of the centrifugal regulator at "an" (to bleed the front R.H. side) (tube n° 1)
- the accelerated idling control at "b" (to bleed the front L.H. side) (tube n° 2)

5. On DX.IE produced since $2 ; 1971$ and DX.DY vehicles produced since 9/1971
Remove the flexible piping from the bleed screw of the R.H. brake block.
Fit a flexible bleed pipe on :

- the bleed screw of the R.H. brake block (to bleed front R.H.)
- the rear bleed screw of the centrifugal governor at "a" (to bleed front L.H.)

6. Insert the ends of tubes (1) and (2) in the hydraulic reservoir.
7. Hold the brake pedal depressed. Slacken both front bleed screws (the fluid under pressure flows out of the brake accumulator).
8. Place the manual height contral lever in the ehigh, position.
(this operation is not necessary on vehicles produced since December 1967 nor on any DV or DT vehicles)
9. With the brake pedal depressed, start the engine. Tighten the pressure regulator bleed screw. Allow the fluid to flow through the flexible tubes until it is free from air bubbles, then tighten the bleed screws.
10. Release the brake pedal and remove the flexible tubes (1) and (2).
11. Check the bleed screws for leakage by depressing fully the brake pedal.
12. Stop the engine.
13. Replace the rubber protecting caps or the flexible tubes onto the bleed screws.

II. BLEEDING THE REAR BRAKES

4431

1. Place the vehicle over a pit or on an autolift, raise the front wheels of the vehicle.
2. Place the manual height control in the "low" position wait for the vehicle to settle down, then place the lever in the "high" position.
3. Connect each bleed screw (1) to a clean recipient using flexible bleed pipes. Loosen the, bleed screw (1).
4. Have the brake pedal held down in the depressed position by an assistant .
Start the engine and let it idle.
When the liquid flows in the flexible pipes without air bubbles, tighten the bleed screws (1) and remove the pipes.
5. Allow the pedal to return to the raised position.

Place the manual height control lever in the normal "road" position.

Rev the engine to re-establish the pressure in the suspension circuit.
6. Depress the brake pedal completely and check that the bleed screws are not leaking. Place the rubber protecting caps on to the bleed screws.
7. With the engine still running :

Top up the level of fluid in the reservoir of the hydraulic circuit (manual height control lever in the high position)
synthetic fluid LHS 2
9/1966
mineral fluid LHM
9/1966
8. Place the manual height control lever in the normal "road" position.

Stop the engine.

3171

VEHICLES ALL TYPES EXCEPT DV-DT

B. BRAKE PEDAL CONTROL.

1. Adjusting the brake pressure distribution.

NOTE: Use test bench 2290-T (for vehicles using synthetic LIIS 2 coloured red) or test bench 3654 - T f for vehicles using LHV fluid coloured zrec."). Connect the pressure gauge calibrated from 0 to 100 bars. (0 to 1450 psi.)

1. Pemove the rear left wing. Remove the mudshield protecting the suspension mechanism. Place the manual height control lever in the elow position.
2. Remove the pipe assembly fixing lug (4) Disconnect the upper pipe (1) (towards the brake pedal qear) f:om the 4 -way union (2) and connect it with a tube to union "b" on the pump.
Plug the opening of union (2).
Remove the pedal panel and the pedal.
-3. Operate the pump to build up the pressure to approximately 100 bars (1450 psi).
Loosen slowly the pump bieea surew "c" in order to bring the pressure back to 60 bars (860 psi.). Measure distance "ml" using a caliper square ($\mathrm{ml}=$ distance between the edge of the slide-valve and the roller.)
3. Release the pressure.
4. Operate the pump again to bring the pressure to 60 bars (860 psi)
Measure the new distance "m2".
5. u) ane the average of the two distances

$$
\mathrm{m} 3=\frac{\mathrm{m} 1+\mathrm{m} 2}{2}
$$

b) Measure "an corresponds to the distance between thecentre line of the roller and the centre line of the slide valve and is obtai-
nable by deducting from distance m 3 .

- The half-diameter of the slide valve : $\frac{6, \underline{35}}{2}-3,175 \mathrm{~mm}$
-Plus the half-diameter of the roller : $\frac{11}{2}=5,5 \mathrm{~mm}$
${ }^{2}$ That is, on the whole $8,675 \mathrm{~mm}$ $\alpha=m 3-8,675 \mathrm{~mm}$
c) If the measure " α " is not equal to $14 \pm 0,25 \mathrm{~mm}$ operate screw (3)

7. Release the pressure by loosening the test bench bleed screw "C".
8. Refit the pedal panel, the petal and the trimming.
9. Remove the tube connecting the pump to the brake pedal gear feed pipe. Remove the sealing plug from the four way union (2) and connect pipe (1) to the union (2).

Fit the pipe assembly fixing lug (4).

10. Fit the mudshield protecting the suspension mechanism.
11. Start the engine and place the manual height control lever in "hizhn position.
12. Bleed the brakes (see same operation Chap. A) fit the rear left wing.

II. CHECKING THE PRESSURE SWITCH.

Use test bench 2290 - T (chicles with I.IIS 2. coloured red) or test bench 3654-T (ichicles using LHV fluid coloured green).
Connect the pressure gauge graduated from 0 to 100 bars (1450 psi.)
13. Connect the openings "c" on the pressure switch and "a" on the pump, using a tube A.

Connect the green and blue plugs of the wires supplied with the test bench to the corresponding coloured terminals.

Connect the "crocodilen clips of these wires to the terminals on a 12 - volts battery. Using the yellow wire, connect terminal "d " on the pressure switch to the vacant terminal on the test bench.

The warning lamp must illuminate, if it does not the pressure switch is faulty.
14. Tiqhten the bleed screw "bn and operate the pump in order to build up the pressure progressiveiy to luu bars (i 450 ?si.).

The lamp must go out between 60 and 70 bars (860-995 psi.).

Release the pressure by very slowly loosening bieed screw abn. The lamp must light between 70 and 60 bars. If not, the pressure switch must be renewed.
15. Release the pressure by loosening the bleed screw "b".
Disconnect the battery.
Disconnect the wiring harness and the tube A.
NOTE : This operation can be carried out on the car.

III. ADJUSTING A STOP LAMP SWITCH.

16. Remove the pedal panel.

Connect a test lamp between stop switch and earth.
Operate the adjusting screw " 1 n until test lamp goes out.
Tighten the screw "l" by exactly one turn and lock the lock nut " 2 m .
NOTE: The screw " 1 " must be perpendicular and in the centre of the blade " 3 m . If necessary bend the end of the blade.
17. Fit the pedal panel.

C. THE BRAKE CONTROL VALVE。

VEHICLES DV. DT

NOTE: These vehicles use *mineral L.H.II. . hydraulic fluid. The main reservoir is painted green and the components are painted or marked in green.

1. CHECKING THE BRAKE CONTROL VALVE.

IMPORTANT NOTE :

Only use test bench 3654-T intended for the mineral LHM fluid (this bench is painted areen) and its accessories 3655-T (the tubes and pressure gange, bear a green marking).

1. Connect the bench pump opening "e" to a brake accumulator feed opening " safari type n. Connect the supply opening of this accumulator to the 3 -way union (1).

2 Connect the other two outlets of the 3 -way union (1) to the feed openings "c" and "d" of the brake control.
Connect the control outlet opening to the bench reservoir by means of tube (2), preferably transparent.
Connect the front brake feed opening "b" to pressure gauge (M2) and the rear brake feed opening "an to pressure gauge (M3).
3. Tighten the bleed screw on the bench and bring the pressure to 100 bars (1450 psi.) On pressure gauge (M1)
4. Press on the control and observe the pressure gauges (M2) and (M3). The pressure should rise first on pressure gauge (M2) and should be constantly greater than that on pressure gauge (M3) by approximately 5 bars (73 psi.) Stop pressing on the control, the pressure should return to zero.
NOTE: After a certain period of use, the pressure gauges (M2) and (M3) may lose their sensitivity.

It is advisable to take a second reading after interchanging the tubes on pressure gauges (M2) and (M3). Take the average of the two readings.

II. CHECKING THE BRAKE CONTROL VALVE FOR LEAKS.

IMPORTANT NOTE: Only use test bench 3654-T intended for mineral LHM fluid (this bench is painted green) and its accessories 3655-T (the tubes and pressure gaukes bear a zreen marking)
5. Connect bench pump opening "a" to a brake accumulator (1) feed opening (safari type). Connect the supply opening of the accumulator (1) to the 3 -way union (2).

6 Connect the other two openings of the 3 -way union (2) to openings "c" and "dn of the brake control.
Block openings "an and "b" of the control by means of plugs.
Connect the outlet opening "e " of the control. to the bench reservoir, by means of a transparent tube (3).

7 Tighten bleed screw " f " on the bench and pump until the pressure reaches approximately 100 bars (1450 psi .) (on pressure gauge M2)
8. Press several times on the control to bleed it. Remove tube (3).

9 Pump until the pressure reaches 140 hars (2030 psi.) (on pressure gauge M2, observe this pressure gauge.

After one minute has elapsed, the pressure should still be 120 bars (1740 psi.) or more.

There should he no escape through outlet opening "en or through the overflow return opening.

If there is, the control must be replaced.

III. CHECKING THE FUNCTIONING OF THE SECURITY VALVE.

IMPORTANT NOTE: Use exclusively test bench $3654-T$ intended for mineral fluid LHM. (This bench is painted kreen) and its accessories 3655-T (pipes ard pressure kauges bear a kreen marking)
10. Connect the security valve feed opening (a) to bench pump opening (c)

Plug the opening (d)
11. Tighten bench bleed screw (f) and operate the pump to build up the pressure progressively. (Pressure gauge M2) the fluid should escape through the openings (b) and (c) when the pressure is below or equal to 90 bars (1280 psi.)
12. Slightly loosen bleed screw (f) to release the pressure progressively.
The fluid escape must stop when the pressure is above 70 bars (1000 psi).
13. If the measure obtained in $\delta 11$ is greater than 90 bars (1280 psi), the thickness of the spring thrust washer must be reduced.
14. If the measure obtained in $\S 12$ is below 70 bars (1000 psi), the thickness of the spring thrust washer must be increased.

IV. CHECKING THE SECURITY VALVE PRESSURE SWITCH.

IMPORTANT NOTE: Use exclusively test bench 3654 - T intensed for mineral fluid LHM. (this bench is painted green) and its accessories 3655-T (pipes and pressure gauges bear a green marking)
15. Connect the security valve feed opening (α) to bench pump opening (c).
Seal the three other valve openings (b, d, e) by means of plugs.
16. Sonnect the pressure switch plug to bench terminal (h) and the two other bench leads to the terminals of a battery. The bench test lamp must illuminate.
17. Tighten bench bleed screw (3) and operate the pump to build up the pressure progressively (pressure gauge Ml) until the test lamp goes out. . This should occur between :

- 55 and 85 bars (800 and 1230 psi)

$$
\text { for vehicles } \longrightarrow 1 \quad 3 / 1973
$$

- 75 and 95 bars (1067 to 1351 psi)
for vehicles $\longmapsto \quad 3 / 1973$

18. Build up the pressure to 100 bars (1420 psi) approximately, then slowly loosen the bleed screw in order to release the pressure progre progressively,
The test lamp must illuminate when the pressure is between (pressure gauge Ml) :

- 85 and 55 bars (1230 and 800 psi)

$$
\text { for rehicles } \rightarrow \quad \text { 3, } 1973
$$

- 95 and 75 bars (1351 and 1067 psi)

$$
\text { for vehicles } \longmapsto \quad 3 / 1973
$$

If the measures obtained are beyoned these limits, the pressure switch must be renewed,

V. CHECKING THE SECURITY VALVE FOR LEAKS

19. Connect the security valve feed opening (a) to bench pump opening (c).
Seal the openings (b, d, e) by means of plugs. Tighten bench bleed screw (g) and build up the pressure to 175 bars (2490 psi) This pressure is to be maintained for 1 minute, after this time has elapsed, there must be no leakage from opening (f) if there is, the security valve must be renewed.

1. ADJUSTING THE CLEARANCE BETWEEN CALIPER AND DISC.

NOTE: Access to the L.H. caliper can be gained from under the vehicle

1. Put the front of vehicle on stands
2. Loosen the screws (1) and insert a 4 mm shim between caliper and disc
3. Tighten the screws (1) to $100-110 \mathrm{~m} \Lambda \mathrm{~N}$ (10 to 11 mkg . -72 to $79 \mathrm{ft} . \mathrm{Ibs}$)
4. Lower the vehicle to the ground.

2. ADJUSTIMG THE CLEARANCE BETWEEN BRAKE PADS AND DISC.

NOTE: Access to the L.H. caliper can be gained from under the vehicle.
5.Put the front of vehicle on stands
6. With the brake completely off on vehicles fitted with hydraulic gear change raise a the pedal to the maximum and wedge it with a piece of wood of about 210 mm high. Place between the brake pads and the disc on each side $a 0,1 \mathrm{~mm}$ shim having a surface equivalent to that of the pads to prevent them from rocking.
Loosen the nuts (4) and (3) (ring spanner 12 sided 16 mm A.F. thinned down to 3 mm or spanner 3559-5)
Adjust the screws (2) (thin-jawed 14 mm O.E. spanner) to bring the brake pads just in contact with the shim
Tighten nuts (4) and (3) (ring spanner 12 sided 16 mm a/f thinned down to 3 mm or spanner 3559-5)
Remove the shims
Make sure that the wheel turns freely
7. Carry out the same adjustement on the other brake caliper.
8 Remove the wooden wedge from under the pedal on vehicle fitted with hydraulic gear change
Lower the vehicle to the ground

III. ADJUSTING THE SHEATH TENSION

9. On vehicles fitted with mechanical gear change
Put the front of vehicle on stands

9a. On vehicle fitted with hydraulic gear change Remove the front left wing and the mudshield protecting the suspension mechanism. Put front of vehicle on stands
10. With the brakes released as indicated in §6 loosen locknut (3) and nut (4) bring the threaded sleeve (2) in contact with the sheath. Screw nut (4) to bring it to within: $0,3-0,5 \mathrm{~mm}$ from the end of the tube (a). Tighten the locknut (3). Remove the wooden wedge from underneath the pedal and check that the wheels turn freely.
11. On vehicle fitted with mechanical gear change
Lower the vehicle to the ground

11a. On vehicle fitted with hydraulic gear change

- Remove the wooden wedge from underneath the pedal
- Lower the vehicle to the ground
- Fit the mudshield protecting the suspension mechanism and the front left wing

		BULB TABLE
Description	Quantity	Type of bulb
Headlamp-Dip	2	European P 45 t 41 (yellow selective) $12 \mathrm{~V}-45 / 40 \mathrm{~W}$
Front direction indicators Rear direction indicators Stop lamp	6	BA - 15 s - single contact-12 V-15 W (large bulb) On Pallas vehicles: single contact $12 \mathrm{~V}-7 \mathrm{~W}$ (large bulb)
Rear lamps Number plate lamp Spare bulbs	6	BA-15s-single contact-4 W Philips Holland 12.821
Front parking lamps	2	BA 9s-12 V-4 W-Tube 10 mm diameter
Front interior lamps (on P $1 / L L / 15$)	2	BA 15s-12V-15 W (large bulb)
Front interior lamps Rear	4	Festoon 12V-7W
Panel lamp Brake warning lamp Brake pad wear warning lamp	4	BA 9s-12 V-2 W-tube $8,8 \mathrm{~mm}$ dia. Max. (NORMA 1529)
Charge warning lamp Clock lamp	2	BA 9s-12V-1.5W
Flashing indicator warning lamp Headlamp main beam warning lamp	2	BA 9s-24V-3W
Boot lamp	1	Festoon 12V-4W
Q.I. Headlamp (option)	2	Q.I. Bulb-12 V-55 W (NORMA 112)

MARKING OF PARTS

1. Front right direction indicator.
2. Front right headlamp.
3. Front right QI headlamp.
4. Town horn.
5. Country horns.
6. Front left QI headlamp.
7. Front left headlamp.
8. Front left direction indicator.
9. Front right brake unit.
10. Starter motor.
11. Dynamo.
12. Voltage regulator.
13. Starter motor relay.
14. Battery.
15. SANOR relay for front right QI headlamps.
16. SANOR relay for front left QI headlamps.
17. SANOR relay for country horns.
18. SANOR relay for headlamp flasher.
19. Front left brake unit.
20. Blower for front heating.
21. Windscreen wiper motor.
22. Switch for interior lamps, operated by front right-hand door.
23. Terminal for accessories.
24. Distributor.
25. Thermal sensor,
26. Ignition coil.
27. Brake pressure switch.
28. Stop lamp switch.
29. Switch for interior lamps, operated by front L.H. door.
30. Switch for front heating.
31. Ignition switch.
32. Cigar lighter.
33. Switch for starter motor relay.
34. Windscreen wiper switch.
35. Charge warning lamp.
36. Switch for parking lomps.
37. Electric clock.
38. Switch for interior lamps.
39. Switch for QI headlamps.
40. Switch for lighting and horns.
41. Thermometer.
42. Warning lamp for headlamp main beam.
43. Bulbs lighting instrument panel.
44. Warning lamp for brake pressure switch.
45. Warning lamp for wear on front brake pads.
46. Fuel guage.
47. Warning lamp for direction indicators.
48. Switch for direction indicators with switch for headlamp flasher.
49. Rheostat for instrument and clock lighting.
50. Front right interior lamp.
51. Rheostat for fuel (gauge) unit.
52. Front left interior lamp.
53. Boot lamp.
54. Switch for boot lamp.
55. Rear right direction indicator.
56. Lamps for number plate,-rear and stop lamps, R.H.
57. Lamps for number plate,-rear and stop lamps, L.H.
58. Rear left direction indicator.
59. Switch for rear heater. (heating $-15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$)
60. Blower for rear heater. (heating $\left.-15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)\right)$
61. Switch for fresh air blower.
62. Fresh air blower. optional
63. SANOR compressor relay.
64. Compressor for horns.

WҰУכษIO ONIצIM

Harness	Wire N^{o}	Colour of ends	Wiring schedule
Front	1	Red Red	Starter motor relay (13) to starter motor relay switch (34)
Front	2	Green Black Green Black Black Black Black Black	Starter motor relay (13) to requlator terminal "BAT" (12) to fusebox (29) ($\mathrm{N}^{\circ} 1$ and 2 fuses) to switch for lighting and horns (41) to front right QI headlamp relay (15) to front left QI headlamp relay (16) to country horn relay (17) to headlamp flasher relay (18)
Dynamo	3	Yellow Yellow	```Dynamo(ll) to terminal "EXC " of regulator (12)```
Dynamo	4	Brown Brown	Dynamo (11) to regulator earth (12)
Dynamo	5	Red Red	```Dynamo(ll) to terminal " DYN "of regulator (12)```
Front	6	Red Red	Terminal "DYN " of regulator (12) to charge warning lamp (36)
Front	7	Yellow Green Black Black Yellow	Fuse box (29) (fuse $N^{\circ}{ }^{1)}$ to windscreen wiper switch (35) to terminal for accessories (23) to windscreen wiper motor (21) (automatic stop) to cigar lighter (33)
Front	8	Blue Black Red Black Black Black + Mauve	Fusebox (29) (fuse N° 2) to rear junction to stop lomp switch (28) to parking lamp switch (37) to clock (38) to ignition switch (32)
Front	9	Red Violet	Ignition switch (32) to ignition coil (26)
Front	10	Violet Violet Violet Violet Violet Violet Violet	Ignition switch (32) to heater switch (31) to fuel qauqe (47) to pressure switch warning lamp (45) to front brake pad wear warning lamp (46) to charge warning lamp (36) to direction indicator switch (49) to thermometer (42) to switch (60) for rear heating ($-15^{\circ} \mathrm{C}(59 \mathrm{~F})$)
Front	11	Blue Blue	Windscreen wiper switch (35) to windscreen wiper motor (21)
Front	12	Red Red	Windscreen wiper switch (35) to windscreen wiper motor (21)
Front	13	Blue Violet Blue	Direction indicator switch (49) to front R.H. junction to rear junction
Front	14	White Violet White	Direction indicator switch (49) to front L.H. junction to rear junction

Harness	Wire N°	Colour of ends	Schedule of Wiring
Front	15	Green Green	Direction indicator switch (49) to direction indicator warning lamp (48)
Front	16	Brown Brown	Front brake pressure switch warning lamp (45) to pressure switch (27) for hydraulic brake unit
Front	17	Grey Grey	Warning lamp (46) for front brake pads to front L.H. harness
Front	18	Violet Violet	Stop lamp switch (28) to rear junction
Front	19	Blue Blue	Thermometer (42) to supply lead (18) for thermal sensor (25)
Front	20	Blue Blue	Switch (41) for lighting and horns to front L.H. junction
Front	21	White Yellow	Switch (4l) for lighting and horns to country horn relay (17)
Front	22	White White	Country horn relay (17) to front L.H. junction
Front	23	Yellow Yellow Yellow	$\left.\begin{array}{l}\text { Switch (41) for lighting and horns } \\ \text { to QI head lamp switch (40) } \\ \text { to headlamp flasher relay (18) }\end{array}\right\}$ on PALLAS
Front	24	White Yellow Yellow Blue	Headlamp flasher relay (18) to front L.H. junction to front R.H. junction to main-beam warning lamp (43)
Front	25	Yellow Yellow Yellow	Switch (40) for QI headlamps to relay (15) for front R.H. QI headlamp (3) to relay (16) for front L.H. QI headlamp (6)
Front	26	White Mauve	Relay (15) for front R.H. QI headlamp to front R.H. junction
Front	27	White Mauve	Relay (16) for front L.H. QI headlamp to front L.H. junction
Front	28	Mauve Black	Relay (18) for headlamp flasher to switch for direction indicators (49)
Front	29	Mauve Mauve Mauve	Earth : to relay (15) for front R.H. QI headlamp to relay (16) for front L.H. QI headlamp to relay (17) for country horns
Front	30	Green Green Green	Switch (41) for lighting and horns to front R.H. junction to front L.H. junction
Front	31	Mauve Mauve	Switch (41) for lighting and horns to fuse box (29) (fuse $\mathrm{N}^{\circ} 3$)
Front	32	Red Mauve Red Blue	Fuse box (29) (fuse $\mathrm{N}^{\circ} 3$) to rear junction to rheostat (50) for lighting instrument panel to switch for parking lamps (37)
Front	33	Red Red Red	Rheostat for lighting instrument panel (50) to lamps lighting instrument panel (44) to clock lamp (38)

Harness	Wire N°	Colour of ends	Schedule of Wiring
Front	15	Green Green	Direction indicator switch (49) to direction indicator warning lamp (48)
Front	16	Brown Brown	Front brake pressure switch warning lamp (45) to pressure switch (27) for hydraulic brake unit
Front	17	Grey Grey	Warning lamp (46) for front brake pads to front L.H. harness
Front	18	Violet Violet	Stop lamp switch (28) to rear junction
Front	19	Blue Blue	Thermometer (42) to supply lead (18) for thermal sensor (25)
Front	20	Blue Blue	Switch (41) for lighting and horns to front L.H. junction
Front	21	White Yellow	Switch (41) for lighting and horns to country horn relay (17)
Front	22	White White	Country horn relay (17) to front L.H. junction
Front	23	Yellow Yellow Yellow	$\left.\begin{array}{c} \text { Switch (41) for lighting and horns } \\ \text { to QI head lamp switch (40) } \\ \text { to headlamp flasher relay (18) } \end{array}\right\} \text { on PALLAS }$
Fiont	24	White Yellow Yellow Blue	Headlamp flasher relay (18) to front L.H. junction to front R.H. junction to main - beam warning lamp (43)
Front	25	Yellow Yellow Yellow	Switch (40) for QI headlamps to relay (15) for front R.H. QI headlamp (3) to relay (16) for front L.H. QI headlamp (6)
Front	26	White Mauve	Relay (15) for front R.H. QI headlamp to front R.H. junction
Front	27	White Mauve	Relay (16) for front L.H. QI headlamp to front L.H. junction
Front	28	Mauve Black	Relay (18) for headlamp flasher to switch for direction indicators (49)
Front	29	Mauve Mauve Mauve	Earth : to relay (15) for front R.H. QI headlamp to relay (16) for front L.H. QI headlamp to relay (17) for country horns
Front	30	Green Green Green	Switch (41) for lighting and horns to front R.H. junction to front L.H. junction
Front	31	Mauve Mauve	Switch (41) for lighting and horns to fuse box (29) (fuse $\mathrm{N}^{\circ} 3$)
Front	32	Red Mauve Red Blue	Fuse box (29) (fuse $\mathrm{N}^{\circ} 3$) to rear junction to rheostat (50) for lighting instrument panel to switch for parking lamps (37)
Front	33	Red Red Red	Rheostat for lighting instrument panel (50) to lamps lighting instrument panel (44) to clock lamp (38)

Harness	Wire N^{0}	Colour of ends	Schedule of Wiring
Front	34	Red Red Red	Switch (37) for parking lamps to front R.H. junction to rear junction
Front	35	Green Red Green	Switch (37) for parking lamps to front L.H. junction to rear junction
Front	36	Brown Brown	Interior lamp switch (39) to rear junction to switch on front R.H. door pillar (22) to switch on front L.H. door pillar (30)
Front	37	Mauve Mauve	Switch (31) for front heating to heater blower motor (20)
Flying lead	38	Brown Brown Brown	Earth : to switch (34) for starter motor relay to switch (39) for interior lamps to clock (38)
Flying lead	39	Red	Ignition coil (26) to distributor (25)
Flying lead	40	Yellow Yellow	Earth : to switch (49) for direction indicators
Flying lead	42	Brown	Earth : to brake pressure switch (27)
Front R.H.	13	Violet Violet	Front R.H. junction to R.H. direction indicator (l)
Front R.H.	24	Yellow Yellow	Front R.H. junction to front R.H. headlamp (2) (main beam)
Front R.H.	26	Mauve Mauve	Front R.H. junction to R.H. QI headlamp (3)
Front R.H.	30	Green Green	Front R.H. junction to front R.H. headlamp (2) (dipped)
Front R.H.	34	Red Red	Front R.H. junction to front R.H. headlamp (2) (sidelamp-parking lamp)
Eront R.H.	42	Brown Brown Brown	Earth : to front R.H. direction indicator (1) to front R.H. headlamp (2) to R.H. QI headlamp (3)
Front L.H.	14	Violet Violet	Front L.H. junction to front L.H. direction indicator (8)
Front L.H.	17	Grey Grey	Front L.H. junction to harness for front brake pads (9) and (19)
Front L.H.	20	Blue Blue	Front L.H. junction to town horn (4)
Front L.H.	22	White White	Front L..H. junction to country horns (5)
Front I... ${ }^{\text {H }}$	24	Yellow Yellow	Front L.H. junction to front L.H. headlamp (7) (main beam)
Front L.H.	27	Mauve Mauve	Front L.H. junction to L.H. QI headlamp (6)

\begin{tabular}{|c|c|c|c|}
\hline Harness \& Wire \(\mathrm{N}^{\circ}\) \& Colour of ends \& Schedule of Wiring \\
\hline Front L.H. \& 30 \& Green Green \& Front L.H. junction to front L.H. headlamp (7) (dipped) \\
\hline Front L.H. \& 35 \& \begin{tabular}{l}
Red \\
Red
\end{tabular} \& Front L.H. junction to front L.H. headlamp (7) (sidelamp - parking lamp) \\
\hline Flying lead \& 43 \& \begin{tabular}{l}
Brown \\
Brown \\
Brown
\end{tabular} \& \begin{tabular}{l}
Earth : \\
to front L.H. direction indicator (8) \\
to front L.H. headlamp (7) \\
to L.H. QI headlamp (6)
\end{tabular} \\
\hline Rear \& 8 \& \begin{tabular}{l}
Black \\
Black
\end{tabular} \& ```
Rear junction
to front R.H. (51) and L.H. (53) interior lamps
``` \\
\hline Rear \& 13 \& \begin{tabular}{l}
Blue \\
Blue
\end{tabular} \& Rear junction to front R.H. direction indicator (56) \\
\hline Rear \& 14 \& White Blue \& Rear junction to rear L.H. direction indicator (59) \\
\hline Rear \& 18 \& \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} \& \begin{tabular}{l}
Rear junction \\
to rear R.H. stop lamp (57) \\
to rear L.H. stop lamp (58)
\end{tabular} \\
\hline Rear \& 32 \& \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} \& Rear junction to R.H. number plate lamp (57) to L.H. number plate lamp (58) to boot lamp (54) \\
\hline Rear \& 34 \& Red Green \& Rear junction to rear R.H. parking lamp (or rear lamp) (57) \\
\hline Rear \& 35 \& Green Green \& Rear junction to rear L.H. parking lamp (or rear lamp) (58) \\
\hline Rear \& 36 \& \begin{tabular}{l}
Brown \\
Brown
\end{tabular} \& Rear junction to front R.H. (51) and L.H. (53) interior lamps. \\
\hline Rear \& 44 \& \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} \& Petrol gauge (47) to rheostat for petrol gauge (52) \\
\hline Rear \& 45 \& Grey
Red

Violet \& | Switch (60) for rear heating ( $-15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$ ) to blower motor (61) for rear heating ( $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$ ) OPTIONAL FITTINGS: |
| :--- |
| 1) on request a fresh air blower (63) is fitted. jumper lead Vi 10 feeds the switch (62) | <br>

\hline Flying lead \& 46 \& Mauve \& flying lead Mv 46 feeds the fresh air blower (63) 2) on request an air horn (65) is fitted. <br>

\hline Flying lead \& 47 \& | Black |
| :--- |
| Black | \& | regulator (12) terminal «BAT" |
| :--- |
| to junction on horn harness | <br>


\hline Horn harness to compressor \& 48 \& | Black |
| :--- |
| Black | \& Junction on horn harness to "SANOR " selay (64) (terminal l; <br>

\hline - do - \& 49 \& White Yellow \& Country horns (5) to "SANOR " relay (64) (terminal 3) <br>
\hline -do - \& 50 \& White White \& "SANOR"relay (64) (terminal 2) to compressor (65) <br>

\hline - do - \& 51 \& | Brown |
| :--- |
| Mauve |
| Brown |\& ``

Earth:
to "SANOR "relay (64) (terminal 4)
to compressor (65)

``` \\
\hline
\end{tabular}

BULB TABLE
\begin{tabular}{|c|c|c|}
\hline Description & Quantity & Type of bulb \\
\hline Headlamp-main/dipped & 2 & European P. 45 E 41 (yellow selective) \(12 \mathrm{v} 45 / 40 \mathrm{w}\). \\
\hline Front flashers Rear flashers Stop lamp & 6 & B.A. -15 s - single contact \(12 \mathrm{v}-15 \mathrm{w}\) (large bulb) On \& Pallas, vehicles-single contact-12v-7w (large bulb) \\
\hline \begin{tabular}{l}
Rear lamps \\
Number plate lamp Spare bulbs
\end{tabular} & 6 & B.A. - 15 s - single contact \(12 \mathrm{v}-4 \mathrm{w}\) Philips Hollande 12.821 \\
\hline Front parking lamps & 2 & B.A. \(9 \mathrm{~s}-12 \mathrm{v}-4 \mathrm{w}\) tube diameter 10 mm \\
\hline Front interior lamps on "PALLAS" & 2 & B.A. - \(15 \mathrm{~s}-12 \mathrm{v}-15 \mathrm{w}\) (large bulb) \\
\hline \[
\begin{aligned}
& \text { Front Interior lamps } \\
& \text { Rear }
\end{aligned}
\] & 4 & Festoon 12v-7w \\
\hline \begin{tabular}{l}
Dashboard lamp \\
Brake pressure warning lamp Brake pad warning lamp
\end{tabular} & 4 & B.A. - 9s-12v-2w tube diameter 8,8 maxi (norma 1529) \\
\hline \begin{tabular}{l}
Charge warning lamp \\
Clock lamp
\end{tabular} & 2 & B.A. - \(9 \mathrm{~s}-12 \mathrm{v}-1,5 \mathrm{w}\) \\
\hline Flasher warning lamp Headlamp warning lamp & 2 & B.A. \(9 \mathrm{~s}-24 \mathrm{v}-3 \mathrm{w}\) \\
\hline Boot lamp & 1 & Festoon 12v-4w \\
\hline Optional Q.I. headlamp & 2 & Q.I. bulb \(12 \mathrm{v}-55 \mathrm{w}\) (norma 112) \\
\hline
\end{tabular}

\section*{SCHEDULE OF PARTS}
1. Front RH direction indicator
2. Front RH headlamp
3. Front RH Q.I. headlamp
4. Town horn
5. Country horns
6. Front LH Q.1. headlamp
7. Front LH headlamp
8. Front LH direction indicator
9. Starter motor
10. Dynamo
11. Voltage regulator
12. Starter motor relay
13. Battery
14. "SANOR" relay for front RH Q.I. headlamp
15. "SANOR" relay for front LH Q.I. headlamp
16. "SANOR" relay for headlamp flasher
17. Front heating blower motor
18. Windscreen wiper motor
19. Front RH door pillar switch
20. Accessory terminal
21. Distributor
22. Thermal sensor
23. Ignition coil
24. Brake pressure switch
25. Stop lamp switch
26. Fuse box
27. Front LH door pillar switch
28. Front heating switch
29. Ignition switch
30. Cigar lighter
31. Starter motor relay switch
32. Windscreen wiper switch
33. Charge warning lamp
34. Parking lamp switch
35. Electric clock
36. Interior lamp switch
37. Q.I. headlamp switch
38. Lighting and horn switch
39. Thermometer
40. Headlamp warning lamp
41. Dashboard lamp
42. Brake pressure switch warning lamp
43. Fuel gauge
44. Direction indicator warning lamp
45. Switch for direction indicators and headlamp flasher
46. Rheostat for dashboard and clock lamps
47. Front RH interior lamp
48. Rheostat for fuel gauge
49. Front LH interior lamp
50. Boot lamp
51. Boot lamp switch
52. Rear RH direction indicator
53. Rear RH number plate and stop lamps
54. Rear LH number plate and stops lamps
55. Rear LH direction indicator
56. Rear heating switch (\(15^{\circ} \mathrm{C}\)) (\(-59^{\circ} \mathrm{F}\))
57. Rear heating blower (\(15^{\circ} \mathrm{C}\)) \(\left(-59^{\circ} \mathrm{F}\right)\)
58. Fresh air blower switch
59. Fresh air blower
60. "SANOR" relay for air horn
61. Compressor

NOTE : On DS 19 Pallas vehicles the headlamp flasher relay on the scuttle (in the case of the DS 19) is on the battery with the Q.I. headlamp relay.
On Safaris and ID 19 A, there is no headlamp flasher.

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & Colour of ends & Wiring schedule \\
\hline Front & 1 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Starter motor relay (12) \\
To starter motor relay switch (31)
\end{tabular} \\
\hline Front & 2 & \begin{tabular}{l}
Green \\
Black \\
Green \\
Black \\
Black \\
Black \\
Black
\end{tabular} & ```
Starter motor relay (12)
 To "BAT % terminal of voltage regulator (ll)
 To fuse box (26)(fuse n}\mp@subsup{n}{}{\circ}1\mathrm{ and 2)
 To lighting and horn switch (38)
 To front RH Q.I. headlamp (14)
 To front LH Q.I headlamp '(15)
 To headlamp flasher relay (16)
``` \\
\hline Dynamo & 3 & Yellow Yellow & \begin{tabular}{l}
Dynamo (10) \\
To «EXC" terminal of voltage regulator (11)
\end{tabular} \\
\hline Dynamo & 4 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & ```
Dynamo (10)
    To earth on voltage regulator (11)
``` \\
\hline Dynamo & 5 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Dynamo (10) \\
To "DYN nterminal on voltage regulator (ll)
\end{tabular} \\
\hline Front & 6 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & "DYN" terminal on voltage requlator To charge warning lamp (35) \\
\hline Front & 7 & \begin{tabular}{l}
Yellow \\
Green Black Black Yellow
\end{tabular} & \begin{tabular}{l}
Fuse box (26) (fuse \(n^{\circ} 1\)) \\
To windscreen wiper motor switch (32) \\
To accessory terminal (20) \\
To windscreen wiper motor (18) (automatic stop) To cigar lighter (30)
\end{tabular} \\
\hline Front & 8 & Blue
Black
Red
Black
Black
Black/mauve & \begin{tabular}{l}
Fuse box (26) (fuse \(\mathrm{n}^{0} 2\)) \\
To rear junction To stop lamp switch (25) To parking lamp switch (34) To clock (35) To ignition switch (29)
\end{tabular} \\
\hline Front & 9 & Red Violet & \begin{tabular}{l}
Ignition switch (29) \\
To ignition coil (23)
\end{tabular} \\
\hline Front & 10 & \begin{tabular}{l}
Violet \\
Violet \\
Violet \\
Violet \\
Violet \\
Violet \\
Violet
\end{tabular} & \begin{tabular}{l}
Ignition switch (29) \\
To heater switch (28) \\
To fuel gauge (43) \\
To brake pressureswitch warning lamp (42) \\
To charge warning lamp (33) \\
To direction indicator switch (45) \\
To thermometer (39) \\
To front heater switch (56) (cold \(-59^{\circ} \mathrm{F}\))
\end{tabular} \\
\hline Front & 11 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Windscreen wiper switch (32) \\
To windscreen wiper motor (18)
\end{tabular} \\
\hline Front & 12 & Red & \begin{tabular}{l}
Windscreen wiper switch (32) \\
To windscreen wiper motor (18)
\end{tabular} \\
\hline Front & 13 & \begin{tabular}{l}
Blue \\
Violet Blue
\end{tabular} & \begin{tabular}{l}
Direction indicator switch (45) \\
To front RH junction \\
To rear junction
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & ```
Colours
 of
 ends
``` & Wiring schedule \\
\hline Front & 14 & White Violet White & Direction indicator switch (45) To front LH junction To rear junction \\
\hline Front & 15 & Green Green & \begin{tabular}{l}
Direction indicator switch (45) \\
To direction indicator warning lamp (44)
\end{tabular} \\
\hline Front & 16 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Brake pressure switch warning lamp (42) To hydraulic brake unit pressure switch (24) \\
\hline Front & 18 & Violet Violet & Stop lamp switch (25) To rear junction \\
\hline Front & 19 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Thermometer (39) \\
To feed wire for thermal sensor
\end{tabular} \\
\hline Front & 20 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Lighting and horn switch (38) To rear junction LH \\
\hline Front & 22 & White White & Lighting and horn switch (38) To rear junction LH \\
\hline Front & 23 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Lightiay and horn switch (38) \\
To Q.I. headlamp switch (37) (Pallas) \\
To headlamp flasher relay (16) (terminal 3)
\end{tabular} \\
\hline Front & 24 & White Yellow Yellow Blue & \begin{tabular}{l}
Headlamp flasher relay (16) (terminal 2 ) \\
To front LH junction \\
To front RH junction \\
To headlamp warning lamp (40)
\end{tabular} \\
\hline Front & 25 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Q.I. headlamp switch (37) \\
To front RH headlamp (3) relay (14) (terminal 3) \\
To front LH headlamp (6) relay (15) (terminal 3)
\end{tabular} \\
\hline Front & 26 & White Mauve & Front RH Q.I. headlamp relay (14) (terminal 2) To front RH junction \\
\hline Front & 27 & White Mauve & Front LH Q.I. headlamp relay (15) (terminal 2) To front RH junction \\
\hline Front & 28 & Mauve Black & Headlamp flasher relay (17) (terminal 4) To direction indicator switch (45) \\
\hline Front & 29 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Earth \\
To front RH Q.I. headlamp relay (14) (terminal 4) \\
To front LH Q.I. headlamp relay (15) (terminal 4)
\end{tabular} \\
\hline Front & 30 & \begin{tabular}{l}
Green \\
Green \\
Green
\end{tabular} & Lighting and horn switch (38) To front RH junction To front LH junction \\
\hline Front & 31 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Liqhting and horn switch To fuse box (26) (fuse \(\mathrm{N}^{\circ} 3\) ) \\
\hline Front & 32 & Red Mauve Red Blue & \begin{tabular}{l}
Fuse box (26) (fuse \(\mathrm{N}^{\mathrm{o}} 3\) ) \\
To rear junction To rheostat (46) for dashboard lamp To parking lamp switch (34)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & ```
Colours
    of
    ends
``` & Wiring schedule \\
\hline Front & 33 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Rheostat (46) for dashboard lamp \\
To dashboard lamp (41) \\
To clock lamp (35)
\end{tabular} \\
\hline Front & 34 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Parking lamp switch (34) To front RH junction To rear junction \\
\hline Front & 35 & \begin{tabular}{l}
Green \\
Red \\
Green
\end{tabular} & \begin{tabular}{l}
Parking lamp switch (34) \\
To front LH junction To rear junction
\end{tabular} \\
\hline Front & 36 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Interior lamp switch (36) \\
To rear junction \\
To RH door pillar switch (19) \\
To LH door pillar switch (27)
\end{tabular} \\
\hline Front & 37 & \begin{tabular}{l}
Mauve \\
Mave
\end{tabular} & \begin{tabular}{l}
Front heating switch (28) \\
To heating unit motor (17)
\end{tabular} \\
\hline Flying lead & 38 & \begin{tabular}{l}
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
To starter motor relay switch (31) \\
To interior lamp switch (36) \\
To clock (35)
\end{tabular} \\
\hline Flying lead & 39 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \[
\begin{aligned}
& \text { Ignition coil (23) } \\
& \text { To distributor (21) }
\end{aligned}
\] \\
\hline Flying lead & 40 & Yellow Yellow & Earth To direction indicator switch (45) \\
\hline Flying lead & 41. & Brown & \begin{tabular}{l}
Earth \\
To brake pressure switch (24)
\end{tabular} \\
\hline Front RH & 13. & Violet Violet & \begin{tabular}{l}
Front RH junction \\
To RH direction indicator (1)
\end{tabular} \\
\hline Front RH & 24 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Front RH junction \\
To front RH headlamp (2) main beam
\end{tabular} \\
\hline Front RH & 26 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front RH junction To front Q.I. headlamp (3) \\
\hline Front RH & 30 & Green Green & \begin{tabular}{l}
Front RH junction \\
To front RH headlamp (2) dipped beam
\end{tabular} \\
\hline Front RH & 34 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Front RH junction \\
To front RH headlamp (sidelamp-parking lamp) (2)
\end{tabular} \\
\hline Front RH & 42 & \begin{tabular}{l}
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
To front RH direction indicator (1) \\
To front RH headlamp (2) \\
To RH Q.I. headlamp (3)
\end{tabular} \\
\hline Front LH & 14 & Violet Violet & \begin{tabular}{l}
Front LH junction \\
To front LH direction indicator (8)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & ```
Colours
 of
 ends
``` & Wiring schedule \\
\hline Front LH & 20 & Blue Blue & Front LH junction To town horn (4) \\
\hline Front LH & 22 & White White & Front LH junction To country horns (5) \\
\hline Front LH & 24 & Yellow Yellow & Front LH junction To front LH headlamp (7) (main beam) \\
\hline Front LH & 27 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Front LH junction \\
To front LH Q.I. headlamp (6)
\end{tabular} \\
\hline Front LH & 30 & Green Green & \begin{tabular}{l}
Front LH junction \\
To front LH headlamp (7) (dipped beam)
\end{tabular} \\
\hline Front LH & 35 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Front LH junction To front LH headlamp (7) (side lamp - parking lamp) \\
\hline Flying lead & 43 & \begin{tabular}{l}
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
To front LH direction indicator (8) To front LH headlamp (7) To front LH Q.I. headlamp (6)
\end{tabular} \\
\hline Rear & 8 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To front RH (47) and front LH (48) interior lamps
\end{tabular} \\
\hline Rear & 13 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Rear junction To rear RH direction indicator (52) \\
\hline Rear & 14 & White Blue & \begin{tabular}{l}
Rear junction \\
To rear LH direction indicator (55)
\end{tabular} \\
\hline Rear & 18 & \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To rear RH stop lamp ( 53 \\
To rear LH stop lamp (54)
\end{tabular} \\
\hline Rear & 32 & Mauve Mauve Mauve & \begin{tabular}{l}
Rear junction \\
To RH number plate lamp (53) To LH number plate lamp (54) To boot lamp (50)
\end{tabular} \\
\hline Rear & 34 & Red Green & \begin{tabular}{l}
Rear junction \\
To rear RH parking lamp (or rear lamp) (53)
\end{tabular} \\
\hline Rear & 35 & Green Green & \begin{tabular}{l}
Rear junction \\
To rear LH parking lamp (or rear lamp) (54)
\end{tabular} \\
\hline Rear & 36 & Brown Brown & \begin{tabular}{l}
Rear junction \\
To front RH (47) and front LH (49) interior lamps
\end{tabular} \\
\hline Rear & 44 & Yellow Yellow & \begin{tabular}{l}
Fuel gauge \\
To fuel gauge (48) rheostat
\end{tabular} \\
\hline Rear & 45 & Grey Red & \begin{tabular}{l}
Rear heating switch (56) ( \(-59^{\circ} \mathrm{F}\) ) \\
To rear heating blower motor (57) (-59 \(\left.{ }^{\circ} \mathrm{F}\right)\)
\end{tabular} \\
\hline
\end{tabular}



DY - DL - DV
September \(1968 \rightarrow\) January 1969

\section*{PART SCHEDULE}
1. Front RH direction indicator
2. Front RH headlamp
3. Auxiliary RH Q.I. Headlamp
4. RH country horn
5. LH country horn
6. First country horn
7. Auxiliary LH Q.I. headlamp
8. Front LH headlamp
9. Front LH direction indicator
10. Voltage regulator relay
11. Starter motor relay
12. Battery
13. Right brake unit
14. Starter motor
15. Alternator
16. Left brake unit
17. Front heating blower motor
18. Screen washer pump
19. Windscreen wiper motor
20. Accessory terminal
21. Auxiliary headlamp relay 22
22. Brake pressure switch
23. Thermal sensor
24. Stop lamp switch
25. Engine oil pressure switch
26. Distributor
27. Ignition coil
28. Fuse box
29. Front RH door pillar switch
30. Front LH door pillar switch
31. Cigar lighter
32. Engine oil pressure warning lamp
33. Charge warning lamp
34. Front heating switch
35. Interior lamp switch
36. Parking lamp switch
37. Clock
38. Starter motor relay switch
39. Lighting switch
40. Ignition switch with anti-theft
41. Water thermometer
42. Head lamp warning lamp
43. Dashboard lamp
44. Brake pressure switch warning lamp
45. Front brake pad wear warning lamp
46. Fuel gauge
47. Direction indicator warning lamp
48. Flasher unit
49. Switch for direction indicators with headlamp. flasher and horn
50. Switch for windscreen wiper and screenwasher
51. Rheostat for dashboard and clock lamps
52. R.H. interior lamp
53. Rheostat for fuel gauge
54. LH interior lamp
55. Boot lamp
56. Boot lamp switch
57. Rear RH direction indicator
58. Number plate lamp, rear and stop lamp R.H.
59. Number plate lamp, rear and stop lamp R.H.
60. Rear LH direction indicator

\section*{OPTIONAL FITTINGS}
61. Rear heating switch (FR-59 F )
62. Rear heating blower ( \(\mathrm{FR}-59^{\circ} \mathrm{F}\) )
63. Air blower switch
64. Air blower
65. Horn compressor relay
66. Horn compressor
D. 51-57

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & Colour of ends & Wiring Schedule \\
\hline Front & 1 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Starter motor relay (11) \\
To starter motor relay switch (38)
\end{tabular} \\
\hline Front & 2 & \begin{tabular}{l}
Black \\
Black \\
Green \\
Red \\
Blue \\
Red \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Starter motor relay (11) (non-disconnectible terminal) \\
To +ve terminal of alternator (15) \\
To fuse box (28) (fuse \(\mathrm{n}^{0} 1\) ) \\
To fuse box (28) (fuse \(n^{\circ} 2\) ) \\
To fuse box (28) (fuse \(\mathrm{n}^{0} 3\) ) \\
To ignition switch (40) \\
To lighting switch (39) \\
To auxiliary headlamp relay (21) \\
To headlamp flasher and horn switch (49)
\end{tabular} \\
\hline Front & 3 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Alternator (15) (terminal "EXC") \\
To voltage regulator (10) (terminal "EXC»)
\end{tabular} \\
\hline Front & 4 & \begin{tabular}{l}
White \\
White
\end{tabular} & \begin{tabular}{l}
Alternator (15) (terminal R) \\
To voltage regulator (10) (terminal " R ")
\end{tabular} \\
\hline Front & 5 & \begin{tabular}{l}
Red \\
Grey \\
Brown
\end{tabular} & \begin{tabular}{l}
Voltage regulator relay (10) (terminal "L") \\
To charge warning lamp (33) \\
To starter motor relay switch (38)
\end{tabular} \\
\hline Front & 6 & Green Black & Fuse box (28) (fuse \(n^{0} 1\) ) To ignition switch (40) \\
\hline Front & 7 & \begin{tabular}{l}
Red \\
Black \\
Black \\
Black \\
Black \\
Black \\
Black \\
Red
\end{tabular} & \begin{tabular}{l}
Fuse box (28) (fuse \(\mathrm{n}^{0} 2\) ) \\
To wind screw wiper motor (19) \\
To cigar-lighter (31) \\
To accessory terminal (20) \\
To windscreen wiper switch (50) \\
To rear junction \\
To clock (37) \\
To stop lamp switch (24)
\end{tabular} \\
\hline Front & 8 & \begin{tabular}{l}
Blue \\
Black
\end{tabular} & \begin{tabular}{l}
Fuse box (28) (fuse \(\mathrm{n}^{0} 3\) ) \\
To parking lamp switch (36)
\end{tabular} \\
\hline Front & 9 & \begin{tabular}{l}
Violet \\
Black \\
Violet \\
Violet
\end{tabular} & \begin{tabular}{l}
Ignition switch (40) \\
To voltage regulator relay (10) (terminal "BOB") \\
To engine oil pressure warning lamp (32) \\
To charge warning lamp (33) \\
To front heating switch (34) \\
To thermometer (41) \\
To fuel gauge (46) \\
To front brake pad wear warning lamp (45) \\
To brake pressure switch warning lamp (44) \\
To flasher unit (48) (+veterminal) \\
To rear heating switch ( 61 ) ( \(\mathrm{FR}-59^{\circ} \mathrm{F}\) ) \\
To fresh air blower switch (63)
\end{tabular} \\
\hline
\end{tabular}
WIRING DIAGRAM
D. 51-57

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{0}\) & Colour of ends & Wiring schedule \\
\hline Front & 10 & White White & \begin{tabular}{l}
Windscreen wiper switch (50) \\
To windscreen wiper motor (19)
\end{tabular} \\
\hline Front & 11 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Windscreen wiper switch (50) \\
To windscreen wiper motor (19)
\end{tabular} \\
\hline Front & 12 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Windscreen wiper switch (50) \\
To windscreen wiper motor (19)
\end{tabular} \\
\hline Front & 13 & Volet Red & Screen washer switch (50) To screen washer pump (18) \\
\hline Front & 14 & \begin{tabular}{l}
Green \\
Violet Blue
\end{tabular} & Direction indicator switch (49) To front left wing junction To rear junction \\
\hline Front & 15 & \begin{tabular}{l}
Yellow \\
Violet \\
White
\end{tabular} & Direction indicator switch (49) To front right wing junction To rear junction \\
\hline Direction indicator switch & 16 & Violet & \begin{tabular}{l}
Flasher unit (48) (terminal c) \\
To direction indicator switch (49)
\end{tabular} \\
\hline Front & 17 & Green Green & \begin{tabular}{l}
Flasher unit (48) (terminal R) \\
To direction indicator warning lamp (47)
\end{tabular} \\
\hline Frort & 18 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Brake pressure switch warning lamp (44) Brake pressure switch (22) \\
\hline Front & 19 & Grey Grey & Front brake pad wear warning lamp (45) To front left wing junction \\
\hline Front & 20 & \begin{tabular}{l}
Elue \\
Blue
\end{tabular} & \begin{tabular}{l}
Thermometer (41) \\
To feed wire for thermal sensor (23)
\end{tabular} \\
\hline Front & 21 & White Red & Engine oil pressure warning lamp (32) To feed wire for engine oil pressure switch (25) \\
\hline Front & 22 & Violet Violet & Stop lamp switch (24) To rear junction \\
\hline Front & 23 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Horn switch (49) To front left wing junction \\
\hline Front & 24 & White White & Horn switch (49) To front left wing junction. \\
\hline
\end{tabular}
D. 51-57

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Wiring schedule \\
\hline Front & 25 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Lighting switch (39) \\
To auxiliary headlamp relay (21) (terminal 3 ) \\
To front right wing junction \\
To front left wing junction
\end{tabular} \\
\hline Front & 26 & \begin{tabular}{l}
White \\
Brown \\
Mauve \\
Mauve \\
Blue
\end{tabular} & \begin{tabular}{l}
Secondary headlamp relay (21) (terminal 2) \\
To headlamp flasher (49) \\
To front right wing junction \\
To front left wing junction \\
To headlamp warning lamp (42)
\end{tabular} \\
\hline Front & 27 & Green Green Green & \begin{tabular}{l}
Lighting switch (39) \\
To front right wing junction To front left wing junction
\end{tabular} \\
\hline Front & 28 & Mauve Yellow & Lighting switch (39) To fuse box (28) (fuse no 4) \\
\hline Front & 29 & \begin{tabular}{l}
Yellow \\
Mauve \\
Mauve \\
Blue
\end{tabular} & \begin{tabular}{l}
Fuse box (28) (fuse \(n^{\circ} 4\) ) \\
To rear junction \\
To dashboard and clock lamp rheostat (5l) \\
To parking lamp switch (36)
\end{tabular} \\
\hline Front & 30 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Dashboard and clock lamp rheostat (51) \\
To dashboard lamp (43) \\
To clock lamp (37)
\end{tabular} \\
\hline Front & 31 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Parking lamp switch (36) \\
To front right wing junction To rear junction
\end{tabular} \\
\hline Front & \(32^{\circ}\) & Green Red Green & \begin{tabular}{l}
Parking lamp switch (36) \\
To front right wing junction To rear junction
\end{tabular} \\
\hline Front & 33 & Red Violet & Ignition switch (40) To ignition coil (27) \\
\hline Front & 34 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front heating switch (34) To blower motor (17) \\
\hline Front & 35 & \begin{tabular}{l}
Brown \\
Black \\
White \\
White
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To interior lamp switch (35) \\
To front RH door pillar switch (29) \\
To front LH door pillar switch (30)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Wiring schedule \\
\hline \multirow[t]{7}{*}{Front} & \multirow[t]{7}{*}{36} & Brown & Joint earth \\
\hline & & Brown & To screen washer pump (18) \\
\hline & & Brown & To windscreen wiper motor (19) \\
\hline & & Brown & To front RH door switch (29) \\
\hline & & Brown & To front LH door switch (30) \\
\hline & & & To clock (37) \\
\hline & & Mauve & To auxiliary headlamp relay (21) (terminal 4) \\
\hline \multirow[t]{2}{*}{Flying lead} & \multirow[t]{2}{*}{37} & Mauve & Fresh air blower switch (63) \\
\hline & & Mauve & To blower motor (64) \\
\hline \multirow[t]{2}{*}{Flying lead} & \multirow[t]{2}{*}{38} & Red & \\
\hline & & Red & To ignition (26) \\
\hline Flying lead & 39 & Green Black & \begin{tabular}{l}
Starter motor relay (11) \\
To horn compressor relay (65) (terminal 1)
\end{tabular} \\
\hline \multirow[t]{3}{*}{Air Horn} & \multirow[t]{3}{*}{40} & White & Road horn RH (4) \\
\hline & & White & To link wire \\
\hline & & Yellow & To relay (65) (terminal 3) \\
\hline Air Horm & 41 & White White & Relay (65) (terminal 2) To compressor (66) \\
\hline \multirow[t]{3}{*}{Air Home} & \multirow[t]{3}{*}{42} & Mauve & Relay (65) (terminal 2) \\
\hline & & \multirow[t]{2}{*}{Brown} & To compressor (66) \\
\hline & & & To earth \\
\hline RH Front & 14 & Violet Blue & \begin{tabular}{l}
RH front junction \\
To RH direction indicator (l)
\end{tabular} \\
\hline RH Front & 25. & Yellow Yellow & \begin{tabular}{l}
RH front junction \\
To front RH headlamp (2) (main beam)
\end{tabular} \\
\hline RH Front & 26 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & RH front junction To auxiliary RH headlamp (3) \\
\hline \multirow[t]{2}{*}{RH Front} & \multirow[t]{2}{*}{27} & Green & RH front junction \\
\hline & & Green & To RH front headlamp (2) (dipped beam) \\
\hline \multirow[t]{2}{*}{RH Front} & \multirow[t]{2}{*}{31} & Red & RH front junction \\
\hline & & Red & To front RH headlamp (2) (sidelamp-parking lamp) \\
\hline \multirow[t]{5}{*}{RH Front} & \multirow[t]{5}{*}{43} & Brown & Earth \\
\hline & & Brown & To RH front direction indicator (1) \\
\hline & & Brown & To RH front headlamp (2) (sidelamp) \\
\hline & & Brown & To RH front headlamp (2) (main and dipped beam) \\
\hline & & Brown & To auxiliary RH headlamp \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\mathrm{o}}\) & Colour of ends & Wiring schedule \\
\hline LH Front & 15 & Violet Blue & \begin{tabular}{l}
LH front junction \\
To front LH direction indicator (9)
\end{tabular} \\
\hline LH Front & 19 & \begin{tabular}{l}
Grey \\
Grey
\end{tabular} & \begin{tabular}{l}
LH front junction \\
To front brake pad harness (13) and (16)
\end{tabular} \\
\hline LH Front & 23 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & LH front junction To main country horn (6) \\
\hline LH Front & 24 & White White & \begin{tabular}{l}
LH front junction \\
To secondary country horns (4) and (5)
\end{tabular} \\
\hline LH Front & 25 & Yellow Yellow & \begin{tabular}{l}
LH front junction \\
To front LH headlamp (8) (main beam)
\end{tabular} \\
\hline LH Front & 26 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
LH front junction \\
To secondary LH headlamp (7)
\end{tabular} \\
\hline LH Front & 27 & Green Green & LH front junction To front LH headlamp (8) (dipped beam) \\
\hline LH Front & 32 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
LH front junction \\
To front LH headlamp (8) (sidelamp-parking lamp)
\end{tabular} \\
\hline LH Front & 44 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
To front LH direction indicator (9) \\
To front LH headlamp (8) (sidelamp) \\
To front LH headlamp (8) (main and dipped beam) To secondary LH headlamp (7)
\end{tabular} \\
\hline Flying lead & 19 & Grey Grey & \begin{tabular}{l}
Front RH brake unit (13) \\
To front LH brake unit (16)
\end{tabular} \\
\hline Rear & 7 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To RH (52) and LH (54) interior lamps
\end{tabular} \\
\hline Rear & 14 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Rear junctiqn \\
To rear RH direction indicator (57)
\end{tabular} \\
\hline Rear & 15 & White Blue & \begin{tabular}{l}
Rear junction \\
To rear LH direction indicator (60)
\end{tabular} \\
\hline Rear & 22 & \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To RH rear stop lamp (58) \\
To LH rear stop lamp (59)
\end{tabular} \\
\hline Rear & 29 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To RH number plate lamp (58) \\
To LH number plate lamp (52) \\
To boot lamp (55)
\end{tabular} \\
\hline
\end{tabular}
D. 51-57

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Wiring schedule \\
\hline Rear & 31 & Red Green & \begin{tabular}{l}
Rear junction \\
To rear RH parking (or tail) lamp (58)
\end{tabular} \\
\hline Rear & 32 & Green Green & \begin{tabular}{l}
Rear junction \\
To rear LH parking (or tail) lamp (59)
\end{tabular} \\
\hline Rear & 35 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To RH (52) and LH (54) interior lamps
\end{tabular} \\
\hline Rear & 45 & Yellow Yellow & \begin{tabular}{l}
Fuel gauge (46) \\
To fuel gauge rheostat (53)
\end{tabular} \\
\hline Rear & 46 & Grey Red & Rear heating switch (61) (FR-59 \({ }^{\circ} \mathrm{F}\) ) To rear heating blower motor (62) (FR-59 F ) \\
\hline
\end{tabular}
\(\rightarrow\)\begin{tabular}{c} 
DY \(\cdot \mathrm{DL}\) \\
\(\mapsto\) /anuary \(1969 \rightarrow\) September 1969
\end{tabular}

\section*{BASIC DIAGRAM}
of circuit for main and auxiliary fixed headlamps (not Q.I.)
1) Vehicles produced between October 1968 and January 1969 (see diagram DY. 510-00 d).

2) Iehiche produced since January 1964 .
( see diagram DY. 510-1 f).



Since January 1969, vehicles equipped with fixed secondary headlamps have been fitted with the same cable system as those equipped with secondary Q.I headlamps.

The assembly of electrical equipment differs from previous models in the following ways:
\(1^{\circ}\) - Fitting of a flying leal(marked N7 (black 7)) to feed the cigar-lighter.
\(2^{\circ}\) - Use of a relay (21) to control the main headlamps ( 2 and 8 ) instead of auxiliary headlamps ( 3 and 7 ).
The assembly diagram is different (wires heavily outlined in diagram overleaf).
a) Affixation of a wire (marked \(R\) (Red) 25) connected by a " \(Y\) " union at the switch terminal (39), receiving the wire (marked J (yellow) 25 ).
b) Connection of wires for feeding the second relay. used for Q.I. headlamps
- The wires marked \(N\) (black) and Mv (mauve) are not used.

NOTE : The wire marked \(N\) (Black) is connected to the positive terminal of the battery; it is carefully isolated to avoid short circuits.
- The wires marked Bc (White) and J (yellow) are connected to each other (these wires are marked Bc (white) 25 and J (yellow) 25 on the diagram).
D. 51-57


The assembly series DY. 510-00e differs from the previous series DY. 510-00 d in the following ways corresponding with page 7 of the latter.


\title{
DX.DJ.DY.DL \\ September \(1966 \rightarrow\) September 1967
}

\section*{DS 21 AND DS 21 M VEHICLES}

\section*{MARKING OF PARTS}
1. Front right direction indicator
2. Front right headlamp
3. Front right QI headlamp
4. Town horn
5. Country horns
6. Front left QI headlamp
7. Front left headlamp
8. Front left direction indicator
9. Voltage regulator
10. Front right brake unit
11. Starter motor relay
12. Battery
13. Starter motor
14. Dynamo
15. Front left brake unit
16. Blower for front heating
17. Windscreen wiper motor
18. Terminal for accessories
19. R.H. fuse box
20. «SANOR" relay for headlamp flasher
21. "SANOR"relay for R.H. QI headlamp
22. "SANOR" relay for L.H. QI headlamp
23. Thermal sensor
24. Distributor
25. Brake pressure switch
26. Stop lamp switch
27. Ignition coil
28. L.H. fuse box
29. Switch for interior lamp, operated by front R.H. door
30. Switch for interior lamp, operated by front L.H. door
31. Switch for front heating
32. Ignition switch
33. Cigar lighter
34. Switch for starter motor relay
35. Windscreen wiper switch
36. Charge warning lamp
37. Switch for parking lamps
38. Electric clock
39. Switch for interior lamps
40. Switch for QI headlamps
41. Switch for lighting and horns
42. Thermometer
43. Warning lamp for headlamp main beam
44. Lamps lighting instrument panel
45. Warning lamp for brake pressure switch
46. Warning lamp for front brake pad wear
47. Fuel gauge
48. Warning lamp for direction indicators
49. Switch for direction indicators with switch for headlamp flasher
50. Rheostat for instrument and clock lighting
51. Fuel gauge unit rheostat
52. Front interior light R.H.
53. Front interior light L.H.
54. Boot lamp
55. Boot lamp switch
56. Rear right direction indicator
57. Lamp for number plate, rear lamp and stop lamp-R.H.
58. Lamp for number plate,-rear lamp and stop lamp-L.H.
59. Rear left direction indicator
\(\left.\begin{array}{l}\text { 60. Switch for rear heating }-15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right) \\ 61 . \text { Blower motor for rear heating }-15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)\end{array}\right\}\) optional
\(\left.\begin{array}{l}\text { 62. Switch for fresh air blower motor } \\ \text { 63. Fresh air blower }\end{array}\right\}\) optional
\}optional

\section*{NOTE : DS 19 and DS 19 MA VEHICLES}

The assembly of the electrical equipment for the DS 19 A and DS 19 MA is slightly different from that of the DS 21 and DS 21 A in that :
\(1^{\circ}\) ) There is no front brake pad wear warning lamp.
\(2^{\circ}\) ) There is only one country horn.

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Schedule of Wiring \\
\hline Front & 1 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Starter motor relay (11) to starter motor switch (34) \\
\hline Front & 2 & \begin{tabular}{l}
Green \\
Black \\
Yellow \\
White \\
Red \\
Black \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Starter motor relay (11) \\
to regulator (9) terminal "BAT" \\
to R.H. fuse box (19) (fuse \(\mathrm{N}^{\circ} 2\) ) \\
to R.H. fuse box (19) (fuse \(\mathrm{N}^{\mathrm{o}}\) 1) \\
to ignition switch (32) \\
to switch (41) for lighting and horns \\
to headlamp flasher relay (20) (terminal 1) \\
to relay for R.H. QI bulb (21) (terminal 1) \\
to relay for L.H. QI bulb (22) (terminal 1)
\end{tabular} \\
\hline Front & 3 & Yellow Yellow & \begin{tabular}{l}
Dynamo (14) \\
to regulator (9) ("EXC"terminal)
\end{tabular} \\
\hline Front & 4 & Brown Brown & Dynamo (14) to requiator earth (9) \\
\hline Front & 5 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Dynamo (14) \\
to regulator (9) f "DYN* terminal) to charge warning lamp (36)
\end{tabular} \\
\hline Front & 6 & \begin{tabular}{l}
Yellow \\
Black \\
Black \\
Yellow \\
Green
\end{tabular} & \begin{tabular}{l}
R.H. fuse box (19) (fuse \(\mathrm{N}^{0}\) 2) \\
to windscreen wiper motor (17) (automatic stop) \\
to terminal for accessories (18) \\
to cigar lighter (33) \\
to windscreen wiper switch (35)
\end{tabular} \\
\hline Front & 7 & \begin{tabular}{l}
White \\
Black \\
Red \\
Black \\
Elack \\
Black
\end{tabular} & \begin{tabular}{l}
R.H. fuse box (19) (fuse \(N^{\circ} 1\) ) \\
to rear junction \\
to stop lamp switch (26) \\
to ignition switch (32) \\
to switch (37) for parking lamps to clock (38)
\end{tabular} \\
\hline Front & 8 & Red Violet & Ignition switch (32) to ignition coil (27) \\
\hline Front & 9 & \begin{tabular}{l}
Violet \\
Violet \\
Violet \\
Violet \\
Violet \\
Violet \\
Violet
\end{tabular} & \begin{tabular}{l}
Ignition switch (32) \\
to charge warning lamp (36) to switch (31) for front heating to thermometer (42) to fuel gauge (47) to front brake pad wear warning lamp (46) to brake pressure switch warning lamp (45) to switch (49) for direction indicators to switch (60) for rear heating ( \(-15^{\circ} \mathrm{C}-59^{\circ} \mathrm{F}\) )
\end{tabular} \\
\hline Front & 10 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Windscreen wiper switch (35) to windscreen wiper motor (17) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & \begin{tabular}{l}
Colour of \\
ends
\end{tabular} & Schedule of Wiring \\
\hline Front & 11 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Windscreen wiper switch (35) to windscreen wiper motor (17) \\
\hline Front & 12 & \begin{tabular}{l}
Blue \\
Violet \\
Blue
\end{tabular} & Switch (49) for direction indicators to front R.H. wing junction to rear junction \\
\hline Front & 13 & \begin{tabular}{l}
White \\
Violet \\
White
\end{tabular} & Switch (49) for direction indicators to front L.H. wing junction to rear junction \\
\hline Front & 14 & \begin{tabular}{l}
Green \\
Green
\end{tabular} & Switch (49) for direction indicators to warning lamp (48) for direction indicators \\
\hline Front & 15 & Brown Brown & Warning lamp (45) for front brake pressure switch to brake pressure switch (25) \\
\hline Front & 16 & \begin{tabular}{l}
Grey \\
Grey
\end{tabular} & Warning lamp (46) for brake pad wear to front L.H. wing junction \\
\hline Front & 17 & \begin{tabular}{l}
Violet \\
Violet
\end{tabular} & Stop lamp switch (26) to rear junction \\
\hline Front & 18 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Thermometer (42) \\
to feed wire for thermal sensor (23)
\end{tabular} \\
\hline Front & 19 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Switch (41) for lighting and horns to front L.H. wing junction \\
\hline Front & 20 & White White & Switch (41) for lighting and horns to front L.H. wing junction \\
\hline Front & 21 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow
\end{tabular} & Switch (41) for lighting and horns to switch (40) for QI headlamps to headlamp flasher relay (20) (terminal 3) \\
\hline Front & 22 & \begin{tabular}{l}
White \\
Yellow \\
Yellow \\
Blue
\end{tabular} & Headlamp flasher relay (20) (terminal 2) to front L.H. wing junction to front R.H. wing junction to headlamp warning lamp (43) \\
\hline Front & 23 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Switch (40) for QI headlamps \\
to relay (22) for L.H. QI headlamp (6) (terminal 3) \\
to relay (21) for R.H. QI headlamp (3) (terminal 3)
\end{tabular} \\
\hline Front & 24 & White Mauve & Relay (21) for R.H. QI headlamp (terminal 2) to front R.H. wing junction \\
\hline Front & 25 & White Mauve & Relay (22) for L..H. QI headlamp (terminal 2) to front L.H. wing junction \\
\hline Front & 26 & Green Green Green & Switch (41) for lighting and horns to front L.H. wing junction to front R.H. wing junction \\
\hline
\end{tabular}
D. 51-21

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\mathrm{o}}\) & Colour of ends & Schedule of Wiring \\
\hline Front & 27 & \begin{tabular}{l}
Mauve \\
Yellow
\end{tabular} & Switch (41) for lighting and horns to L.H. fuse box 28 (fuse \(\mathrm{N}^{\circ}\) 1) \\
\hline Front & 28 & \begin{tabular}{l}
Yellow \\
Mauve \\
Red \\
Blue
\end{tabular} & \begin{tabular}{l}
L.H. fuse box (28) (fuse \(\mathrm{N}^{0} 1\) ) \\
to rear junction \\
to rheostat (50) for lighting instrument panel and clock to parking lamp switch (37)
\end{tabular} \\
\hline Front & 29 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Rheostat (50) for lighting instrument panel and clock to lamps lighting instrument panel (44) to clock lamp (38) \\
\hline Front & 30 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Switch for parking lamps (37) to R.H. wing junction to rear junction \\
\hline Front & 31 & \begin{tabular}{l}
Green \\
Red \\
Green
\end{tabular} & Parking lamp switch (37) to L.H. wing junction to rear junction \\
\hline Front & 32 & Mauve Black & Head lamp flasher relay (20) (terminal 4) to switch (49) for direction indicators \\
\hline Front & 33 & Brown Brown & \begin{tabular}{l}
Switch for interior lamp (39) \\
to rear junction \\
to switch for interior lamp operated by front L.H. door (30) to switch for interior lamp operated by front R.H. door (29)
\end{tabular} \\
\hline Front & 34 & Mauve Mauve & Switch for front heating (31) to blower motor (16) \\
\hline Flying lead & 35 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & ```
Earth
    to relay (21) for R.H. QI headlamp (terminal 4)
    to relay (22) for L.H. QI headlamp (terminal 4)
``` \\
\hline Flying lead & 36 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
to switch (34) for starter relay to switch (39) for interior lamps to cluck (38)
\end{tabular} \\
\hline Flying lead & 37 & Yellow Yellow & Earth to switch for direction indicators (49) \\
\hline Flying lead & 38 & Brown & Earth to brake pressure switch (25) \\
\hline Flying lead & 39 & Red & Ignition coil (27) to distributor (24) \\
\hline Front R.H. & 12 & Violet Violet & Front junction R.H. to R.H. direction indicator (1) \\
\hline Front R.H. & 22. & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & Front junction R.H. to front R.H. headlamp (2) (main beam) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & \[
\begin{aligned}
& \text { Wire } \\
& \mathrm{N}^{0}
\end{aligned}
\] & Colour of ends & Schedule of Wiring \\
\hline Front R.H. & 24 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front R.H. junction to R.H. QI headlamp (3) \\
\hline Front R.H. & 26 & \begin{tabular}{l}
Green \\
Green
\end{tabular} & Front R.H. junction to front R.H. headlamp (2) (dip) \\
\hline Front R.H. & 30 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Front R.H. junction to front R.H. headlamp (2) (parking lamp-side lamp) \\
\hline Front R.H. & 40 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & ```
Earth
 to front R.H. direction indicator (1)
 to front R.H. headlamp (2)
 to front R.H. QI headlamp (3)
``` \\
\hline Front L.H. & 13 & \begin{tabular}{l}
Violet \\
Violet
\end{tabular} & Front L.H. junction to front L.H. direction indicator (8) \\
\hline Front L.H. & 16 & Grey Grey & Front L.H. junction to harness for front brake pads (10) and (15) \\
\hline Front L.H. & 19 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front L.H. junction to town horn (4) \\
\hline Front L.H. & 20 & \begin{tabular}{l}
White \\
White
\end{tabular} & Front L.H. junction to country horns (5) \\
\hline Front L.H. & 22 & Yellow Yellow & Front L.H. junction to front L.H. headlamp (7) (main beam) \\
\hline Front L.H. & 25 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front L.H. junction to L.H. QI headlamp (6) \\
\hline Front L.H. & 26. & Green Green & Front L.H. junction to front L.H. headlamp (7) (dip) \\
\hline Front L.H. & 31 & Red Red & Front L.H. junction to front L.H. headlamp (7) (parking lamp-side lamp) \\
\hline Front L.H. & 41 & Brown & \begin{tabular}{l}
Earth : \\
to front L.H. direction indicator (8) to front L.H. headlamp (7) to QI headlamp (6)
\end{tabular} \\
\hline Flying lead & 16 & Grey Grey & Front R.H. brake unit (10) to front L.H. brake unit (15) \\
\hline Rear & 7 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Rear junction to front L.H. (53) and R.H. (52) interior lamps \\
\hline Rear & 12 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Rear junction to rear R.H. direction indicator (56) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & \begin{tabular}{l}
Colour \\
of ends
\end{tabular} & Schedule of Wiring \\
\hline Rear & 13 & White Blue & Rear junction to rear L.H. direction indicator (59) \\
\hline Rear & 17 & \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} & Rear junction to rear R.H. stop lamp (57) to rear L.H. stop lamp (58) \\
\hline Rear & 28 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & Rear junction to R.H. number plate lamp (57) to L.H. number plate lamp (58) to boot lamp (54) \\
\hline Rear & 30 & Red Green & Rear junction to rear R.H. parking lamp (or rear lamp) (57) \\
\hline Rear & 31 & Green Green & Rear junction to rear L.H. parking lamp (or rear lamp) (58) \\
\hline Rear & 33 & Brown Brown & \begin{tabular}{l}
Rear junction \\
to front R.H. (52) and L.H. (53) interior lamps
\end{tabular} \\
\hline Rear & 42 & Yellow Yellow & Fuel guage (47) to rheostat for fuel gauge (51) \\
\hline Rear & 43 & \begin{tabular}{l}
Grey \\
Red
\end{tabular} & \begin{tabular}{l}
Switch (60) for rear heating \(\left(-15^{\circ} \mathrm{C}\left(-59^{\circ} \mathrm{F}\right)\right)\) \\
to blower motor (61) for rear heating ( \(\left.-15^{\circ} \mathrm{C}\left(-59^{\circ} \mathrm{F}\right)\right)\) \\
OPTIONAL FITTINGS: \\
1) A. fresh air blower (63) is fitted by request
\end{tabular} \\
\hline Flying lead & 44 & \begin{tabular}{l}
Violet \\
Mauve
\end{tabular} & \begin{tabular}{l}
A jumper lead Vi 9 feeds switch (62) \\
A flying lead Mv 44 feeds cold air blower (63)
\end{tabular} \\
\hline Flying lead & 45 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & 2) A compressor horn (65) is fitted by request Regulator terminal "BAT"(9) to horn harness junction \\
\hline  & 46 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Horn harness junction to "SANOR"relay (64) (terminal l) \\
\hline Horn & 47 & White Yellow & \[
\begin{aligned}
& \text { Country horns (5) } \\
& \text { to "SANOR "relay (64) (terminal 3) }
\end{aligned}
\] \\
\hline Harness & 48 & White White & "SANOR » relay (64) (terminal 2) to compressor (65) \\
\hline to compressor & 49 & \begin{tabular}{l}
Brown \\
Mauve \\
Brown
\end{tabular} & ```
Earth
    to "SANOR" relay (64) (terminal 4)
    to compressor (65)
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{BULB TABLE.} & DX. DJ. DY- DL. \\
\hline Description & Quantity & Type of bulb. \\
\hline Main beam / dip & 2 & European P 45t 41 (yellow selective) 12 V-45/40 W. \\
\hline Q.I. headlamp & 2 & Q.I. bulb \(12 \mathrm{~V}-55 \mathrm{~W}\) (Norma 112) \\
\hline Auxiliary headlamp & 2 & European P45t 41 (yellow selective) 12 V-45/40 W. (Main beam only) \\
\hline Front direction indi cators & 2 & BA 155-single contact-12V-15 W (pear-shaped bulb) MAZDA 1073 \\
\hline Rear direction indicators Stop lamps & 4 & BA 155 - single contact - \(12 \mathrm{~V}-15 \mathrm{~W}\) (large bulb) On Pallas models : 2 stop lamp bulbs - single contact 12 V-7 W (large bulb) \\
\hline \begin{tabular}{l}
Rear lamps \\
Number plate lighting Spare bulbs
\end{tabular} & 6 & BA-15S-s single contact - 12 V-4 W-Philips Holland 12-821 \\
\hline Front parking lamps & 2 & \(\mathrm{BA} 9 \mathrm{~S}-12 \mathrm{~V}-4 \mathrm{~W}\) - tube diameter 10 \\
\hline Front interior lamps (on Pallas) & 2 & BA 155-12 V-15 W (large bulb) \\
\hline Front interior lamps
Rear & 4 & Festoon 12V-7 W \\
\hline \begin{tabular}{l}
Instrument panel lighting \\
Brake warning lamp \\
Brake pad wear warning lamp
\end{tabular} & 4 & BA 95-12 V-2 W-tube diameter 8,8 maxi (Norma 1529) \\
\hline \begin{tabular}{l}
Charge warning Iamp \\
Oil pressure warning lamp
\end{tabular} & 2 & BA 95-12 V-2 W-base diameter 7. \\
\hline Direction indicator warning lamp Main beam warning lamp & 2 & BA 95-24V-3W \\
\hline Boot lamp & 1 & Festoon 12V-4W \\
\hline Clock lamp & 1 & BA \(95-12 \mathrm{~V}-1,5 \mathrm{~W}\) \\
\hline
\end{tabular}

\section*{VEHICLES DS 21 AND DS 21 M}

\section*{MARKING OF PARTS.}
1. Front R.H. direction indicator
2. Front R.H. headlamp
3. Auxiliary headlamp or Q.I. headlamp
4. R.H. country hern
5. L.H. country horn
6. Town horn
7. Auxiliary headlamp or Q.I. headlamp
8. Front L.H. headlamp
9. Front L.H. direction indicator
10. Relay for voltage regulator
11. Front R.H. brake unit
12. Front L.H. brake unit
13. Blower for front heating
14. Fresh air blower (optional)
15. Starter motor relay
16. Battery
17. Starter motor
18. "SA NOR" relay for horn compressor (optional)
19. Horn compressor (optional)
20. Alternator
\(\underset{4}{7}\) 21. Thermal sensor
22. Engine oil pressure switch
23. Windscreen wiper motor
24. R.H. fuse box
25. Terminal for accessories
26. "SANOR" relay for headlamp flasher
27. "SANOR" relay for front R.H. auxiliary headlamp
28. "SANOR" relay for front L.H. auxiliary headlamp
29. Distributor
30. Ignition coil
31. Brake pressure switch
32. Stop lamp switch
33. L.H. fuse box
34. Switch on front L.H. door pillar
35. Switch on front L.H. door pillar
36. Switch for fresh air blower (optional)
37. Switch for rear heating (\(-15^{\circ} \mathrm{C}-59^{\circ} \mathrm{F}\)) (optional)
38. Switch for front heating
39. Ignition switch
40. Cigar lighter
41. Switch for starter motor relay.
42. Windscreen wiper switch
43. Engine oil pressure warning lamp
44. Charge warning lamp
45. Switch for parking lamps
46. Clock
47. Switch for interior lamps
48. Switch for auxiliary or Q.I. headlamps
49. Switch for lighting and horns
50. Thermometer
51. Main beam warning lamp
52. Lamps lighting instrument panel
53. Brake pressure switch warning lamp
54. Front brake pad wear warning lamp
55. Fuel gauge
56. Warning lamp for direction indicators
57. Switch for direction indicators with switch for headlamp flasher
58. Rheostat for fuel gauge unit.
59. Rheostat for fuel gauge unit
60. R.H. interior lamp
61. Rear heating unit \(\left(-15^{\circ} \mathrm{C}-59^{\circ} \mathrm{F}\right)\) (optional)
62. L.H. interior lamp
63. Boot lamp
64. Switch for boot lamp
65. Rear R.H. direction indicator
66. Rear R.H. number plate lamp, rear lamp and stop lamp
67. Rear L.H. number plate lamp, rear lamp and stop lamp
68. Rear L.H. direction indicator

NOTE : Vehicles DS. 19A and DS. 19MA
The assembly of electrical equipment for the DS. 19A and DS. 19MA is slightly different from that of the DS. 21 and DS. 21 A in that :
1) There is no front brake pad wear warning lamp
2) There is only one country horn
WIRING DIAGRAM

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Wiring schedule \\
\hline Front & 1 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Starter relay (15) \\
To switch for starter relay (41)
\end{tabular} \\
\hline Front & 2 & \begin{tabular}{l}
Black \\
Black Yellow White Red Black Black Black Black
\end{tabular} & \begin{tabular}{l}
Starter relay (15) (not disconnectible) \\
To voltage regulator + terminal (20) \\
To fuse box R.H. (24) (fuse \(\mathrm{n}^{\circ} 2\)) \\
To fuse box R.H. (24) (fuse \(n^{0} 1\)) \\
To ignition switch (39) \\
To switch for lighting and horns (49) \\
To headlamp flasher relay (26) (terminal 1) \\
To SANOR relay (27) for R.H. Q.I. headlamp (terminal 1) \\
To SANOR relay (28) for L.H. Q.I. headlamp (terminal 1)
\end{tabular} \\
\hline Front & 3 & Yellow Yellow & \begin{tabular}{l}
Alternator (20) (terminal "EXC") \\
To voltage regulator relay (10) (terminal "EXC")
\end{tabular} \\
\hline Front & 4 & White White & Alternator (20) (terminal R) To voltage regulator relay (10) (terminal R) \\
\hline Front & 5 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Voltage regulator relay (10) (terminal L) To charge warning lamp (44) \\
\hline Front & 6 & Yellow Black Black Yellow Green & \begin{tabular}{l}
Fuse box R.H. (24) (fuse n \({ }^{0} 2\)) \\
To windscreen wiper motor (23) (automatic stop) \\
To terminal for accessories (25) \\
To cigar lighter (40) \\
To windscreen wiper switch (42)
\end{tabular} \\
\hline Front & 7 & \begin{tabular}{l}
White \\
Black \\
Red Black Black \\
Black
\end{tabular} & \begin{tabular}{l}
Fuse box R.H. (24) (fuse \(n^{\circ} 1\)) \\
To rear junction \\
To stop lamp switch (32) \\
To ignition switch (39) \\
To parking lamp switch (45) \\
To clock (46)
\end{tabular} \\
\hline Front & 8 & Red Violet & \begin{tabular}{l}
Ignition switch (39) \\
To ignition coil (30)
\end{tabular} \\
\hline Front & 9 & \begin{tabular}{l}
Violet \\
Violet
\end{tabular} & \begin{tabular}{l}
Ignition switch (39) \\
To charge warning lamp (44) \\
To engine oil pressure warning lamp (43) \\
To switch for front heating (38) \\
To thermometer (50) \\
To fuel gauge (56) \\
To front brake pad wear warning lamp (54) \\
To brake pressure switch warning lamp (53) \\
To direction indicator switch (57) \\
To switch for rear heating (37) \\
To switch for fresh air blower (36) \\
To voltage regulator relay (10) (terminal "BOB")
\end{tabular} \\
\hline
\end{tabular}
WIRING DIAGRAM

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & Colour of ends & Schedule of wiring \\
\hline Front & 10 & Blue Blue & Switch (42) for windscreen wiper To windscreen wiper motor (23) \\
\hline Front & 11 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Switch (42) for windscreen wiper To windscreen wiper motor (23) \\
\hline Front & 12 & \begin{tabular}{l}
Blue \\
Violet \\
Blue
\end{tabular} & Switch (57) for direction indicators To front R.H. wing junction To rear junction \\
\hline Front & 13 & White Violet White & Switch (57) for direction indicators To front L.H. wing junction To rear junction \\
\hline Front & 14 & \begin{tabular}{l}
Green \\
Green
\end{tabular} & Switch (57) for direction indicators To direction indicator warning lamp (56) \\
\hline Front & 15 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Brake pressure switch warning lamp (53) To brake pressure switch (31) \\
\hline Front & 16 & Grey Grey & Front brake pad wear warning lamp (54) To front L.H. wing junction \\
\hline Front & 17 & Violet Violet & Stop lamp switch (32) To rear junction \\
\hline Front & 18 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Thermometer \\
To feed wire for thermal sensor (21)
\end{tabular} \\
\hline Front & 19 & White White & \begin{tabular}{l}
Engine oil pressure warning lamp (43) \\
To feed wire for engine oil pressure switch (22)
\end{tabular} \\
\hline Front & 20 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Switch (49) for lighting and horns To front L.H. wing junction \\
\hline Front & 21 & White White & Switch (49) for lighting and horns To front L.H. wing junction \\
\hline Front & 22 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Switch (49) for lighting and horns \\
To switch (48) for auxiliary headlamps To headlamp flasher relay (26) (terminal 3)
\end{tabular} \\
\hline Front & 23 & White Yellow Yellow Blue & \begin{tabular}{l}
Headlamp flasher relay (26) (ierminal 2) \\
To front L.H. wing junction \\
To front R.H. wing junction \\
To main beam warning lamp (51)
\end{tabular} \\
\hline Front & 24 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Switch (48) for auxiliary headlamps \\
To R.H. auxiliary headlamp relay (27) (terminal 3) \\
To L.H. auxiliary headlamp relay (28) (terminal 3)
\end{tabular} \\
\hline
\end{tabular}
WIRING DIAGRAM

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Schedule of wiring \\
\hline Front & 25 & White Mauve & R.H. auxiliary headlamp relay (27) (terminal 2) To front R.H. wing junction \\
\hline Front & 26 & \begin{tabular}{l}
White \\
Mauve
\end{tabular} & L. H. auxiliary headlamp relay (27) (terminal 2) To front L.H. wing junction \\
\hline Front & 27 & \begin{tabular}{l}
Green \\
Green \\
Green
\end{tabular} & Switch (49) for lighting and homs To front R.H. wing junction To front L.H. wing junction \\
\hline Front & 28 & Mauve Yellow & Switch (49) for lighting and horns To L.H. fuse box (33) (fuse \(n^{0} 1\)) \\
\hline Front & 29 & Yellow Mauve Red Blue & \begin{tabular}{l}
L. H. fuse box (33) (fuse \(n^{\circ} 1\)) \\
To rear junction \\
To rheostat (58) for instrument panel and clock lighting To parking lamp switch (45)
\end{tabular} \\
\hline Fiont & 30 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Rheostat (58) for instrument panel and clock lighting To lamps (52) lighting instrument panel To clock lamp (46) \\
\hline Front & 31 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Switch (45) for parking lamps To front R.H. wing junction To rear junction \\
\hline Front & 32 & \begin{tabular}{l}
Green \\
Red \\
Green
\end{tabular} & Switch (45) for parking lamps To front L. H. wing junction To rear junction \\
\hline Front & 33 & Mauve Black & Headlamp flasher relay (26) (terminal 4) To direction indicator switch (57) \\
\hline Front & 34 & Brown Brown & \begin{tabular}{l}
Switch (47) for interior lamps \\
To rear junction \\
To switch (34) on front L.H. door pillar To switch (35) on front R.H. door pillar
\end{tabular} \\
\hline Front & 35 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Switch (38) for front heating To blower motor (13) \\
\hline Flying lead & 36 & Mauve Mauve & Switch (36) for fresh air blower To blower motor (14) \\
\hline Flving lead & 36 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Ignition coil (30) \\
To distributor (29)
\end{tabular} \\
\hline
\end{tabular}

Manual 814-1

\section*{fig 3}

Tracing the mark on the drive pulley, engine stopped, timing pin in place in the engine flywheel

Mark "a" opposite the "zero" of the gauge.

\section*{fig 4}

With the engine turning at 2000 r.p.m., the position of the mark on the pulley when the distributor is set correctly
b \(4^{\circ}\) distributor

\section*{fig 5}

With the engine idling, the mark on the pulley may be below the "zero" of the graduated gauge

\section*{III. PRINCIPLE OF THE METHOD OF MEASURING THE ADVANCE BY USE OF STROBOSCOPIC LAMP.}

Figure l represents the advance curve obtained on the test bench of the distributor alone (advance in distributor degrees in relation to the speed of rotation in distributor r.p.m.), the point \(0^{\circ}\) being the point at which the breakers open when the distributor is at rest.

On the engine, the spark advance at a given speed represents the number of crankshaft advance degrees between the moment when the spark occurs (firing point) and the T.D.C. of the piston.

Figure 2 represents the advance curve of the preceding distributor assembled on the engine. The curves in figure 1 and figure 2 are identical but displaced vertically from the static ignition value; moreover turning the distributor also displaces the advance curve vertically: the advance curve rises when the distributor is turned in the advanceincrease direction, and vice-versa.

Setting the ignition advance by stroboscope is done by passing the advance curve through a determined point. When timing the distributor, with the engine stopped in a position determined by the mark on the engine flywheel, the point through which the distributor advance curve passes is situated on the line 0 engine r.p.m. (at A, figure 2).

If the timing is carried out by stroboscope, the point through which the advance curve passes, corresponds to a determined engine speed (at C, figure 2). In the example chosen (DX engine, since October 1968) the timing point is \(20^{\circ}\) crankshaft at 2000 engine r.p.m.

The position of the engine flywheel found with the locating pin, allows the crankshaft position to be obtained that corresponds to the static advance position \(12^{\circ}\) in relation to the T.D.C. (at A, figure 2)

Distance \(B\) represents the number of degrees between the static advance point and the firing point required. In the example chosen distance \(B\) represents \(8^{\circ}\) crankshaft.

\section*{Practical method:}
- With the engine at rest, place the timing.pin in the engine flywheel (the crankshaft is still in the \(12^{\circ}\) advance position) : make a mark "a" on the camshaft drive pulley apposite a fixed reference (the zero of the gauge) (fig. 3)
- With the engine running at 2000 r.p.m. the advance point should be at \(20^{\circ}\) crankshaft.
This point is therefore displaced by : \(20^{\circ}-12^{\circ}=8^{\circ}\) crankshaft
in relation to the static advance point.
The static advance point having been marked on the drive pulley the position of the mark " \(a\) " indicates the distributor advance : the difference " \(b\) " should therefore be \(4^{\circ}\) (fig. 4).
table of values for adjusting the static ignition timing
- Column A : engine speed at which the timing must be carried out
- Column B : total angle of spark advance in crankshaft degrees in relation to the T.D.C.
- Column C : angle of advance in relation to the static ignition timing in distributor degrees.
\begin{tabular}{|c|c|c|c|c|}
\hline & & A & B & C \\
\hline Vehicle type & Remarks & \begin{tabular}{l}
Speed in engine \\
r.p.m. to carry out timing
\end{tabular} & Total advance in crankshaft degrees & \begin{tabular}{l}
Advance in relation \\
to static setting indistributor degrees
\end{tabular} \\
\hline \[
\begin{gathered}
\text { DS } \\
\left(O_{c t} .55 \text { to July } 59\right)
\end{gathered}
\] & Distributor with double Contact Breakers Curve Cl & 2000 & \(22^{\circ}\) & \(5^{\circ}\) \\
\hline \[
\begin{gathered}
\text { ID } \\
\text { (lntil Feb. } 1901 \text {) }
\end{gathered}
\] & Vacuum advance capsule disconnected Curve C2 and D1 & 2000 & \(22^{\circ}\) & \(5^{\circ}\) \\
\hline \[
\begin{gathered}
\text { DS } \\
(\text { July } 59 \text { t, Sept. } 65)
\end{gathered}
\] & Curve C3 & 2000 & \(22^{\circ}\) & \(5^{\circ}\) \\
\hline \[
\frac{\text { 1D }}{\text { (Feb. 6t osept. 64) }}
\] & Vacuum advance capsule disconnected Curve C3 and D1 & 2000 & \(22^{\circ}\) & \(5{ }^{\circ}\) \\
\hline \[
\begin{gathered}
\text { 1D } \\
\left(S_{e p t} 61 \text { to. Sept. } 65\right)
\end{gathered}
\] & Curve C4 & 2000 & \(26^{\circ}\) & \(7^{\circ}\) \\
\hline \[
\begin{gathered}
\hline \mathrm{DE} \\
(\text { Sept. } 6.5 \text { to Sept. } 66)
\end{gathered}
\] & Curve C5 & 2000 & \(22^{\circ}\) & \(5^{\circ}\) \\
\hline \begin{tabular}{l}
DX.DJ.DXF.DJF. \\
(Sept. 6.5 to Sept. 68)
\end{tabular} & Mark on distributor DX-05 b Curve C6 & 3000 & \(18^{\circ}\) & \(3^{\circ}\) \\
\hline \begin{tabular}{l}
DY.DL.DYF.DLF. \\
(Sept. 6. to Sept. 68)
\end{tabular} & \begin{tabular}{l}
Mark on distributor DY-05 \\
Curve C7
\end{tabular} & 2000 & \(16^{\circ}\) & \(2^{\circ}\) \\
\hline \[
\frac{\text { DV }}{\left(S_{\text {ept }} 66\right. \text { to Sept. 68) }}
\] & Mark on distributor Curve C8 & 2000 & \(15^{\circ}\) & \(1^{\circ} 30^{\prime}\) \\
\hline DX.DJ.DXF.DJF. (Oct. 68 to Sept.72) DP (Since Sept. 72) & \begin{tabular}{l}
Mark on distributor DX-05i \\
Curve C9
\end{tabular} & 2000 & \(20^{\circ}\) & \(4^{\circ}\) \\
\hline DY.DL.DYF.DLF.DV.DT. (0.t. 68 to May 69) & Mark on distributor DV-05 d Curve Clo & 2000 & \(24^{\circ}\) & \(6^{\circ}\) \\
\hline \begin{tabular}{l}
DY.DL.DYF.DLF.DT. \\
(Since May 69) \\
DV (Since Sepi. 72)
\end{tabular} & Mark on distributor DY-010A Curve Cll & 2000 & \(28^{\circ}\) & \(8^{\circ}\) \\
\hline \[
\begin{gathered}
\text { DV } \\
\text { (Mlay } 69 \text { to Sept. } 72 \text {) }
\end{gathered}
\] & Mark on distributor DV-010A Curve Cl 2 & 2000 & \(24^{\circ}\) & \(6^{0}\) \\
\hline \begin{tabular}{l}
DX.DXBW.DJ.DXF.DJF. \\
(Since Sept. 72)
\end{tabular} & Mark on distributor DV-010A Curve Cl 2 & 2000 & \(23^{\circ}\) & \\
\hline
\end{tabular}
* If the distributor is changed on vehicles DX.DJ.DJF. produced between September 1965 and September 1968 it is possible to fit the distributor of vehicles DX.DJ.DXF.DJF. produced since October 1968, i.e. :
either distributor SEV-MARCHAL (supplier's mark A 222)
DX. 211-014 a.
- or distributor DUCELLIER (supplier's mark 4253-A)
DX. \(211-05 \mathrm{j}\).

Distributor timing therefore takes place at :
\begin{tabular}{|c|c|c|}
\hline Speed & Total advance & \begin{tabular}{c}
Advance in relation \\
to the static setting
\end{tabular} \\
\hline 2000 r.p.m. & \(20^{\circ}\) & \(4^{\circ}\) \\
\hline
\end{tabular}

\section*{WIRING DIAGRAM}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{0}\) & Colour of ends & Schedule of wiring \\
\hline Flying lead & 37 & Mauve Mauve Mauve & \begin{tabular}{l}
Earth \\
To front R.H. auxiliary headlamp relay (27) (terminal 4) To front L.H. auxiliary headlamp relay (28) (terminal 4)
\end{tabular} \\
\hline Flying lead & 38 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
To switch (41) for starter motor relay To switch (47) for interior lamps To clock (46)
\end{tabular} \\
\hline Flying lead & 39 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & Earth To switch (57) for direction indicators \\
\hline Flying lead & 40 & Green Black & \begin{tabular}{l}
Starter motor relay (15) \\
To horn compressor relay (18) (terminal 1)
\end{tabular} \\
\hline Horn to Compressor & 41 & White White Yellow & ```
R.H. country horn (4)
 To link wire
 To "SANOR" relay (18)(terminal 3)
``` \\
\hline Horn to Compressor & 42 & White White & \begin{tabular}{l}
"SANOR" relay (18) (terminal 2) \\
To compressor (19)
\end{tabular} \\
\hline Horn to Compressor & 43 & \begin{tabular}{l}
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
"SANOR" relay (18) (terminal 4) \\
To compressor (19) \\
To earth
\end{tabular} \\
\hline Front R.H. & 12 & Violet Blue & \begin{tabular}{l}
Front R.H. junction \\
To R.H. direction indicator (1)
\end{tabular} \\
\hline Front R.H. & 23 & Yellow Yellow & \begin{tabular}{l}
Front R.H. junction \\
To front R.H. headlamp (2) (main beam)
\end{tabular} \\
\hline Front R.H. & 25 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front R.H. junction To R.H. auxiliary headlamp (3) \\
\hline Front R.H. & 27 & Green Green & Front R.H. junction To front R.H. headlamp (2) (dip) \\
\hline Front R.H. & 31 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Front R.H. junction To front R.H. headlamp (2) (sidelamp-parking lamp) \\
\hline Front R.H. & 44 & Brown & \begin{tabular}{l}
Earth \\
To front R.H. direction indicator (1) \\
To front R.H. headlamp (2) (sidelamp) \\
To front R.H. headlamp (2) (main beam-dip) \\
To cuxiliary headlamp (3)
\end{tabular} \\
\hline Front L.H. & 13 & Violet Blue & Front L.H. junction To front L.H. direction indicator (9) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{0}\) & Colour of ends & Schedule of wiring \\
\hline Front L.H. & 16 & \begin{tabular}{l}
Grey \\
Grey
\end{tabular} & \begin{tabular}{l}
Front L.H. junction \\
To harness for front brake pads (11) and (12)
\end{tabular} \\
\hline Front L.H. & 20 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front L.H. junction To town horn (6) \\
\hline Front L.H. & 21 & White White & \begin{tabular}{l}
Front L. H. junction \\
To country horns (5) and (4)
\end{tabular} \\
\hline Front L.H. & 23 & Yellow Yellow & Front L.H. junction To front L.H. headlamp (8) (main beam) \\
\hline Front L.H. & 26 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front L.H. junction To L.H. auxiliary headlamp (7) \\
\hline Front L.H. & 27 & Green Green & Front left hand junction To front L.H. headlamp (dip) (8) \\
\hline Front L.H. & 32 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Front L.H. junction \\
To front L.H. headlamp (8) (sidelamp-parking lamp)
\end{tabular} \\
\hline Front L.H. & 45 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
To front L.H. direction indicator (9) \\
To front L.H. lieadlamp (8) (sidelamp) \\
To auxiliary headlamp (7) \\
To front L.H. headlamp (main beam and dip) (8)
\end{tabular} \\
\hline Flying lead & 16 & \begin{tabular}{l}
Grey \\
Grey
\end{tabular} & Front R.H. brake unit (12) To front L.H. brake unit (11) \\
\hline Rear & 7. & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Rear junction To R.H. (60) and L.H. (62) interior lamps \\
\hline Rear & 12 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To rear R.H. direction indicator (65)
\end{tabular} \\
\hline Rear & 13 & \begin{tabular}{l}
White \\
Blue
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To rear L.'H. direction indicator (68)
\end{tabular} \\
\hline Rear & 17 & \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To rear R.H. stop lamp (66) \\
T : rear L.H. stop lamp (67)
\end{tabular} \\
\hline Rear & 29 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To R.H. number plate lamp (66) \\
To L.H. number plate lamp (67) \\
To boot lamp (63)
\end{tabular} \\
\hline Rear & 31 & \begin{tabular}{l}
Red \\
Green
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To rear R.H. parking lamp (or sidelamp) (66)
\end{tabular} \\
\hline
\end{tabular}
WIRING DIAGRAM

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & Colour of ends & Schedule of wiring \\
\hline Rear & 32 & Green Green & \begin{tabular}{l}
Rear junction \\
To rear L.H. parking lamp (or sidelamp) (67)
\end{tabular} \\
\hline Rear & 34 & Arown Erown & \begin{tabular}{l}
Rear junction \\
To R.H. (60) and L.H. (62) interior lamps
\end{tabular} \\
\hline Rear & 46 & Yellow Yellow & \begin{tabular}{l}
Fuel gauge (55) \\
To fuel gauge rheostat (59)
\end{tabular} \\
\hline Rear & 47 & Grey Red & \begin{tabular}{l}
Switch (37) for rear heating ( \(-15^{\circ} \mathrm{C}-59^{\circ} \mathrm{F}\) ) \\
To blower motor ( 61 ) for rear heating ( \(-15^{\circ} \mathrm{C} \quad 59^{\circ} \mathrm{F}\) )
\end{tabular} \\
\hline
\end{tabular}


NOTE :
The voltage regulator (10) is earthed by:
1) A flying lead (48) (coloured brown) joining upper R.H. securing screw on regulator to screw (1) on front R.H. sidemember.
2) A flying lead joining rear L.H. securing screw on battery support to upper R.H. securing stud on water pump.


ARRANGEMENT OF THE ELECTRICAL INSTALL ATION


The assembly of electrical equipment of the DX \(510-00 \mathrm{c}\) differs from that of the \(\mathrm{DX} \mathrm{510-00} \mathrm{~b} \mathrm{in} \mathrm{that} \mathrm{:}\)

1-The relay (27) for the RH (3) and LH (7) auxiliary headlamps replaces the two relays (27) and (28).
The feeds leads Mv 25 for the \(\mathrm{RH}(3)\) and LH (7) auxiliary headlamps replace leads Mv 25 and Mv 26.

2-The switches (34) and (35) on the front RH and LH door pillars have been modified.
- Feed leads Bc 34 replace feed leads 34.
- The two earth leads Mr 48 did not exist before.

3 - Since \(F \geq\) bruary 1968 an earth lead 49 has been fitted to the windscre en wiper motor (23). One end is fixed to the windscreen wiper motor flange assembly screw, and the other end to the LH securing stud on the windscreen washer reservoir support.

DX - DJ
October \(1968 \rightarrow\) J anuary 1969
1. Front RH direction indicator
2. Front RH headlamp
3. Auxiliary RH QI headlamp
4. RH country horn
5. LH country horn
6. First cuuntry horn
7. Auxiliary LH QI headlamp
8. Front LH headlamp
9. Front LH direction indicator
10. Voltage requlator relay
11. Starter motor relay
12. Battery
13. RH hrake unit
14. Starter motor
15. Alternator
16. LH brake unit
17. Front heating blower motor
18. Screen washer pump
munual 0.4-1
19. Windscreen wipper motor
20. Accessories terminal
21. Headlamp relay
22. QI headlamp relay
23. Brake pressure switch
24. Thermal sensor
25. Stoplamp switch
26. Engine oil pressure switch
27. Distributor
28. Ignition coil
29. Fuse box
30. Front RH door switch for interior 1 mmp
31. Front LH do or switch for interior lamp
32. Cigar lighter
33. Engine oil pressure warning lamp
34. Charge warning lamp
35. Front heating switch
36. Interior lamps switch
37. Parking lamps switch
38. Clock
39. Starter motor relay switch
40. Switch for lighting and QI headlamps
41. Ignition switch with anti-theft lock
42. Water thermometer
43. Headlamp warning lamp
44. Dashboard lighting switch
45. Brake pressure switch warning lamp
46. Brake pad wear warning lamp
47. Fuel qauge
48. Direction indicator warning lamp
49. Flasher unit

50- Switch for direction indicators, headlamp flasher, and horn
51. Switch for windscreen wipers and screenwasher
52. Rheostat for dashboard lamps and clock
53. RH interior lamp
54. Rheostat for fuel gauge
55. LH interior lamp
56. Boot lamp
57. Boot lamp switch
58. Rear RH direction indicator
59. Number plate. lamp, rear and stop 1 amps , RH
60. Number plate lamp, rear and stop lamps, LH
61. Rear LH direction indicator

OPTIONAL FITTINGS
62. Rear heating switch ( \(F R-59^{\circ} \mathrm{F}\) )
63. Rear heating blower motor (FR-59 F )
64. Air blower switch
65. Air blower motor
66. Compressor horn relay
67. Horn compressor








ELECTRICITY
WIRING DIAGRAM

D. \(51-28\)


\(\stackrel{n}{n}\)

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{0}\) & Colour of ends & Wiring schedule \\
\hline LH Front & 15 & Violet Rlue & Front LH junction to front LH direction indicator (9) \\
\hline LH Front & 19 & \begin{tabular}{l}
Grey \\
Crey
\end{tabular} & Front LH junction to front brake pad harness (13) and (16) \\
\hline LH Front & 23 & Blue Blue & Front LH junction to town horn (6) \\
\hline LH Front & 24 & White White & Front LH junction to country horn (5) and (4) \\
\hline LH Front & 26 & Yellow Yellow & Front LH junction to front LH headlamp ( 8 ) (main beam) \\
\hline LH Front & 27 & Green Green & Front LH junction to front LH headlamp (8) (dipped beam) \\
\hline LH Front & 32 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Front LH junction to front LH headlamp (8) (sidelamp - parking lamp) \\
\hline LH Front & 34 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front LH junction to auxiliary LH headlamp (7) \\
\hline LH Front & 46 & \begin{tabular}{l}
Prown \\
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & ```
Earth
    to front LH direction indicator (9)
    to front LH headlamp (8) (sidelamp)
    to front LH headlamp (8) (main and dipped beam)
    to auxiliary headlamp (7)
``` \\
\hline Flying lead & 19 & Grey Grey & Front RH brake unit (13) to front LH brake unit (16) \\
\hline Rear & 7 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Rear junction to RH (53) and LH (58) interior lamps \\
\hline Rear & 14 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Rear junction to rear RH direction indicator (58) \\
\hline Rear & 15 & White Blue & Rear junction to rear LH direction indicator (61) \\
\hline Rear & 22 & \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Rear junction \\
to rear RH stoplamp (59) \\
to rear LH stoplamp (60)
\end{tabular} \\
\hline Rear & 29 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Rear junction \\
to RH number plate lamp (59) \\
to LH number plate lamp (60) \\
to boot lamp (56)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Wiring schedule \\
\hline Rear & 31 & Red Green & Rear junction to rear RH parking lamp (or tail lamp) (59) \\
\hline Rear & 32 & Green Green & ```
Rear junction
 to rear LH parking lamp (or tail lamp) (60)
``` \\
\hline Rear & 37 & Brown Brown & Rear junction to RH (53) and LH (55) interior lamps \\
\hline Rear & 47 & Yellow Yellow & Fuel gauge (47) to fuel gauge rheostat (54) \\
\hline \multirow[t]{20}{*}{Rear} & \multirow[t]{20}{*}{48} & \multirow[t]{20}{*}{\begin{tabular}{l}
Grey \\
Red
\end{tabular}} & \multirow[t]{20}{*}{Rear heating (FR-59 F ) switch (62) to blower motor (63) for rear heating (FR \(-59^{\circ} \mathrm{F}\) )} \\
\hline & & & \\
\hline
\end{tabular}


\section*{ARRANGEMENT OF THE ELECTRICAL INSTALLATION}


The assembly of electrical equipement of the DX. \(510-00\) e only differs from that of the DX. \(510-00 \mathrm{~d}\) in that : There is a flying lead (N7) feeding the cigar lighter (32), connected to the terminal for accessories (20) (this lead is heavily outlined in the diagram opposite).

\section*{BASIC DIAGRAM}
of the main and QI auxiliary headlamp circuit
(since October 1968).


BULB TABLE
\(D X=D J=D Y=D T-D V\)
\(D X=D J=D Y=D T-D V\)
\(\longmapsto\) Sept 1969
\begin{tabular}{|c|c|c|}
\hline Description & Quantity & Type of bulb \\
\hline Main beam / dip & 2 & European P 45 t 41 (yellow selective) \(12 \mathrm{~V}-45 / 40 \mathrm{~W}\) \\
\hline Auxiliary headlamp & \[
2
\]
\[
2
\] & ```
QI bulb 12V-55W
    or
European P 45 t 41 (yellow selective) 12V-45 / 40W
(main beam only)
``` \\
\hline Front direction indicators & 2 & BA 15s-12V-15W \\
\hline Rear direction indicators Stop lamp & 4 & \begin{tabular}{l}
BA 15s-12V-15W (large bulb) \\
on Pallas models: BA \(15 \mathrm{~s}-12 \mathrm{~V}-7 \mathrm{~W}\) (large bulb)
\end{tabular} \\
\hline \begin{tabular}{l}
Rear lamps \\
Number plate lighting Spare bulbs
\end{tabular} & 6 & BA \(15 \mathrm{~s}-12 \mathrm{~V}-4 \mathrm{~W}\) \\
\hline Front parking lamps & 2 & BA \(9 \mathrm{~s}-12 \mathrm{~V}-4 \mathrm{~W}\) tube diameter 10 mm \\
\hline Front interior lamps (oh Pallas) & 2 & BA \(15 \mathrm{~s}-12 \mathrm{~V}-15 \mathrm{~W}\) (large bulb) \\
\hline Front and rear interior lamps & 4 & Festoon 12V-7W \\
\hline Warning lamp cluster instrument panel lighting warning lamps & \[
\begin{array}{r}
2 \\
11
\end{array}
\] & 14V-3W-type Wedge-Base, tube diameter 10 \\
\hline Lighting of heating controls (on Pallas) & 1 & BA 9s-12V-2W-type T 8/2 \\
\hline Lighting of glove compartment (on Pallas) & 1 & BA \(9 \mathrm{~s}-12 \mathrm{~V}-2 \mathrm{~W}\)-type T \(8 / 2\) \\
\hline Clock lamp & 1 & BA 9s-12V-2W-type T \(8 / 2\) \\
\hline Boot lamp & 1 & Festoon 12V-5W \\
\hline
\end{tabular}

FUSE TABLE

\section*{MARKING OF PARTS}

1-Front R.H. direction indicator.
2-Front R.H. headlamp.
3-Front R.H. auxiliary headlamp.
4-R.H. country horn.
5- L.H. country horn.
6-First country horn.
7 - Front L.H. auxiliary headlamp.
8 -Front L.H. headlamp.
9-Front L.H. direction indicator.
10-Front R.H. brake unit.
11. Solenoid starter motor.

12-Alternator.
Manual 814-1
13- Coolant temperature thermal switch.
14-Front L.H. brake unit.
15-Relay-tension regulator unit.
16-Starter motor relay.
17. Heating (\(\left.-5^{\circ} \mathrm{C}\right)\left(41^{\circ} \mathrm{F}\right)\)

18-Battery.
19-Switch on front R.H. pillar.
20-Windscreen washer pump.
21- Windscreen wiper motor.
22-Brake pressure switch (DX-DJ DY)
23 - Stop lamp switch.
24 - Distributor.
25-Engine oil pressure switch.
26 - Ignition coil.
27 - Fuse box.
28-Security valve pressure switch (DT-DV),
29-Switch on front L.H. door pillar.

30-Terminal for accessories.
31-Flasher unit.
32 - Starter motor relay switch (DX - DY).
33-Relay for headlamps.
34 - Rheostat for lamps lighting instrument panel.
35-Glove compartment lighting (Pallas)
36 - Cigar lighter.
37 - Switch for heated rear window (optional).
38 - Switch for heating.
39-Clock (except D.V.).
40-Switch for interior lamps.
41-Switch for parking lamps.
42-Lighting for heating control (Pallas)
43-Lighting switch.
44 - Warning lamp cluster.
45-Switch for direction indicators.
46-Switch for windscreen wiper and washer.
47-Ignition switch.
48-R.H. lateral interior lamp.
49-Fuel gauge sender.
50 - Heated rear window (optional).
51 - L.H. lateral interior lamp.
52-Boot lamp.
53 - Rear R.H. interior lamp (DX - DJ - DY expect Pallas).
54 - Rear L.H. interior lamp (DX - DJ - DY expect Pallas).
55-Rear R.H. direction indicator.
56-Rear R.H. number plate lamp, stop lamp and rear lamp. 57-Rear L.H. number plate lamp, stop lamp and rear lamp.
58 - Rear L.H. direction indicator.

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{3}\)
\end{tabular} & Colour of ends & Schedule of Wiring \\
\hline Front & 1 & Red White & Starter motor relay (16) to starter motor switch (32) or (47) \\
\hline Front & 2 & \begin{tabular}{l}
Black \\
Black \\
Green \\
Red \\
Elue \\
Red \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Starter relay (16) (non-disconnectable terminal) to " + " alternator terminal (12) \\
to fuse box (27) (fuse \(\mathrm{N}^{\circ} 1\)) \\
to fuse box (27) (fuse \(\mathrm{N}^{\circ} 2\)) \\
to fuse box (27) (fuse \(\mathrm{N}^{\circ} 3\)) \\
to ignition switch (47) \\
to lighting switch (43) \\
to headlamp relay (33) \\
to switch (45) for direction indicators
\end{tabular} \\
\hline Front & 3 & \begin{tabular}{l}
Brown \\
Red
\end{tabular} & Starter switch (32) or (47) to relay-tension requlator unit (15) (terminal L) \\
\hline Front & 4 & \begin{tabular}{l}
Green \\
Elack \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Fuse box (27) (fuse \(\mathrm{N}^{\circ}\) 1) \\
to ignition switch (47) \\
to cigar lighter (36) \\
to rear harness junction
\end{tabular} \\
\hline Front & 5 & \begin{tabular}{l}
Red \\
Green \\
Black \\
Black \\
Red
\end{tabular} & \begin{tabular}{l}
Fuse box (27) (fuse \(\mathrm{N}^{\circ} 2\)) \\
to ignition switch (47) \\
to terminal for accessories (30) \\
to clock (39) \\
to stop lamp switch (23)
\end{tabular} \\
\hline Front & 6 & \begin{tabular}{l}
Blue \\
Black
\end{tabular} & Fuse box (27) (fuse \(\mathrm{N}^{\circ} 3\)) to switch (41) for parking lamps \\
\hline Front & 7 & Blue Violet & Ignition switch (47) to ignition coil (26) \\
\hline Front & 8 & \begin{tabular}{l}
Yellow \\
Elack \\
Violet \\
Black
\end{tabular} & \begin{tabular}{l}
Ignition switch (47) \\
to switch (37) for heated rear window (optional) \\
to relay-tension regulator unit (15) (terminal " \(\mathrm{BC},: "\)) \\
to flasher unit (31) (terminal « + ")
\end{tabular} \\
\hline Front & 9 & \begin{tabular}{l}
Mauve \\
Blue \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Ignition switch (47) \\
to heating switch (38) \\
to windscreen wiper switch (46) \\
to feed lead for warning lamp cluster (44) (yellow housing) \\
to windscreen wiper motor (21) (automatic stop)
\end{tabular} \\
\hline Front & 10 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Ignition switch (26) to warning lamp cluster (44) (tachometer) (yellow housing) \\
\hline Front & 11 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & Relay-tension requlator unit (15) (terminal "EXC") to alternator (12) (terminal "EXC») \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire N & Colour of ends & Schedule of Wiring \\
\hline Front & 12 & White White & Alternator (12) (terminal R) to relay - voltage regulator unit (15) (terminal \(R\)) \\
\hline Front & 13 & \begin{tabular}{l}
Mauve \\
Yellow \\
Mauve
\end{tabular} & Lighting switch (43) to fusebox (27) (fuse \(\mathrm{N}^{\mathrm{C}} 4\)) to lighting for heating controls (42) \\
\hline Front & 14 & \begin{tabular}{l}
Yellow \\
Blue \\
Red \\
Green \\
Mauve
\end{tabular} & \begin{tabular}{l}
Fuse box (27) (fuse \(\mathrm{N}^{0} 4\)) \\
to switch (41) for parking lamps \\
to rheostat (34) for lamps lighting instrument panel to warning lamp cluster (44) (green housing) (warning lamps) to rear harness
\end{tabular} \\
\hline Front & 15 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Switch (41) for parking lamps to front R.H. wi.ig harness to rear harness \\
\hline Front & 16 & Green Red Green & Switch (41) for parking lamps to front L.H. wing harness to rear harness \\
\hline Front & 17 & \begin{tabular}{l}
Green \\
Green \\
Green
\end{tabular} & Lighting.switch (43) to front L.H. junction to front R.H. wing junction \\
\hline Front & 18 & Yellow Yellow & Lighting switch (43) to headlamp relay (33) \\
\hline Front & 19 & Red Mauve Mauve & Lighting switch (43) to front L.H. wing junction to front R.H. winc junction \\
\hline Front & 20 & \begin{tabular}{l}
White \\
Blue \\
Yellow \\
Yellow \\
Brown
\end{tabular} & \begin{tabular}{l}
Headlamp relay (33) \\
to warning lamp cluster (44) (green housing) (main beam \\
to front L.H. wing harness warning lamp) \\
to front R.H. wing harness \\
to direction indicator switch (45)
\end{tabular} \\
\hline Front & 21 & \begin{tabular}{l}
Violet \\
Red
\end{tabular} & Flasher unit (31) to direction indicator switch (45) \\
\hline Front & 22 & \begin{tabular}{l}
White \\
White
\end{tabular} & Switch for direction indicators (45) to front L.H. wing harness \\
\hline Front & 23 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Switch (45) for direction indicators to front L.H. wing harness \\
\hline Front & 2.4 & \begin{tabular}{l}
Green \\
Green \\
Violet \\
Blue
\end{tabular} & \begin{tabular}{l}
Switch.(45) for direction indicators \\
to warning lamp cluster (44) (white housing) (R.H. ir dicator warning lamp) \\
to front R.H. wing harness \\
to rear harness
\end{tabular} \\
\hline
\end{tabular}

- WIRING DIAGRAM

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{0}\)
\end{tabular} & Colour of ends & Schedule of Wiring \\
\hline Front L.H. & 17 & Green Green & Front harness to front L.H. headlamp (8) (dip) \\
\hline Front L.H. & 19 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front harness to auxiliary L.H. headlamp (7) \\
\hline Front L.H. & 20 & Yellow Yellow & \begin{tabular}{l}
Front harness \\
to front L.H. headlamp (8) (main beam)
\end{tabular} \\
\hline Front L.H. & 22 & \begin{tabular}{l}
White \\
White
\end{tabular} & Front harness to horns (4) and (5) \\
\hline Front L.H. & 23 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front harness to first horn (6) \\
\hline Front L.H. & 25 & Violet Blue & Front harness to front L.H. direction indicator (9) \\
\hline Front L.H. & 38 & \begin{tabular}{l}
Grey \\
Grey
\end{tabular} & Front harness to flying lead for brake pads (DX -DJ) \\
\hline Flying lead & 38 & Grey Grey & Front L.H. harness to brake pads (10) and (14) \\
\hline Front L.H. & 42 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & Small unit joint earth to L.H. auxiliary headlamp (7) to front L.H. headlamp (8) to front L.H. direction indicator (9) \\
\hline Rear & 4 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Front harness junction to interior lamps (48), (51), (53) and (54) \\
\hline Rear & 14 & Mauve & Front harness junction to boot lamp (52) \\
\hline Rear & 15 & Red Green & Front harness junction to rear R.H. number plate lamp (56) \\
\hline Rear & 16 & Green Green & Front harness junction to rear L.H. number plate lamp (57) \\
\hline Rear & 24 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front harness junction to rear R.H. direction indicator (55) \\
\hline Rear & 25 & \begin{tabular}{l}
White \\
Blue
\end{tabular} & Front harness junction to rear L.H. direction indicator (58) \\
\hline Rear & 32 & Grey & Front harness junction to heated rear window (50) (optional) \\
\hline
\end{tabular}

OPERATION \(N^{0}\) DV, 510.00 a : A s sembly of electrical equipment.

\section*{BULB TABLE}

즌
\(\underset{\text { DV }}{\longmapsto \text { Sept. } 1966 \rightarrow \text { Sept. } 1967}\)
\begin{tabular}{|c|c|c|}
\hline Description & Quantity & Type of bulb \\
\hline Main beam / dip & 2 & European P45t4l (yellow selective)
\[
12 \mathrm{~V}-45 / 40 \mathrm{~W}
\] \\
\hline Front direction indicators Rear direction indicators Stop lamps & 6 & BA-155-single contact \(12 \mathrm{~V}-15 \mathrm{~W}\) (large bulb) \\
\hline Rear lamps Number plate lamp Spare bulbï: & 6 & BA-15s-single contact 12V-4W Philips Holland 12821 \\
\hline Front parking lamps & 2 & BA 9s-12V-4W-tube diameter \(=10 \mathrm{~mm}\) \\
\hline Interior lamp & 1 & BA \(15 \mathrm{~s}-12 \mathrm{~V}-15 \mathrm{~W}\) (large bulb) \\
\hline \begin{tabular}{l}
Panel lighting \\
Brake warning lamp
\end{tabular} & 4 & BA 9s-12V-2 W-tube diameter \(=8,8 \mathrm{~mm}\) maxi \((\) NORMA 1529\()\) \\
\hline Charge warning lamp Clock lighting & 2 & BA 9s-12V-1,5W \\
\hline Direction indicator warning lamp Main beam warning lamp & 2 & BA 9s-24V-3W \\
\hline Boot lamp & 1 & Festoon 12V-4W \\
\hline QI headlamp (optional) & 2 & QI bulb 12V-55W (NORMA 112) \\
\hline
\end{tabular}

\section*{MARKING OF PARTS}
1. Front R.H. direction indicator
2. Front R.H. headlamp
3. Front R.H. QI headlamp (optional)
4. 2 nd country horn
5. l st country horn
6. Front L.H. QI headlamp (optional)
7. Front L.H. headlamp
8. Front L.H. direction indicator
9. Voltage regulator
10. Starter motor relay
11. Battery
12. Starter motor
13. Dynamo

14. Blower for front heating
15. Pressure switch for security valve (brakes)
16. Windscreen wiper motor
17. Terminal for accessories
18. R.H. side fuse box
19. "SANOR " relay for front R.H. QI headlamp
20. "SANOR" relay for front L.H. QI headlamp
21. Thermal sensor
22. Stop lamp switch
23. Ignition coil
24. L.H. side fuse box
25. Switch on front R.H. door pillar
26. Switch on front L.H. door pillar
27. Switch for front heating
28. Ignition switch
29. Switch for starter relay
30. Windscreen wiper switch
31. Charge warning lamp
32. Switch for parking lamp
33. Electric clock
34. Switch for interior lamp
35. Switch for QI headlamps (optional)
36. Switch for lighting and horns
37. Thermometer
38. Main beam warning lamp
39. Lamps lighting instrument panel
40. Warning lamp for brake pressure switch
41. Fuel gauge
42. Warning lamp for direction indicators
43. Switch for direction indicators
44. Rheostat for lamps lighting instrument panel and for clock
45. Rheostat for fuel gauge unit
46. Interior lamp
47. Boot lamp
48. Switch for boot lamp
49. Rear R.H. direction indicator
50. Number plate lamp, rear lamp and stop lamp, R.H. side
51. Number plate lamp, rear lamp and stop lamp, L.H. side
52. Rear L.H. direction indicator
53. Switch for rear heating

Optional \(\left(-15^{\circ} \mathrm{C}\right)\left(59^{\circ} \mathrm{F}\right)\)
54. Blower for rear heating \(\left(-15^{\circ} \mathrm{C}\right)\left(59^{\circ} \mathrm{F}\right)\)
55. «SANOR» relay for horn compressor
56. Horn compressor

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\mathrm{o}}\) & Colour of ends & Schedule of Wiring \\
\hline Front & 1 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Starter motor relay (10) to switch (29) for starter relay \\
\hline Front & 2 & \begin{tabular}{l}
Green \\
Black \\
Yellow \\
Black \\
Black \\
Black \\
Red
\end{tabular} & Starter motor relay (10) to voltage regulator terminal (9) "BAT " to fuse box (18) (fuses \(\mathrm{N}^{\mathrm{o}} 1\) and 2) to switch (36) for lighting and horns to relay (19) for front R.H. QI headlamp to relay (20) for front L.H. QI headlamp to lighting switch (28) (mauve marking) \\
\hline Dynamo & 3 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & Dynamo (13) to voltage regulator terminal (9) "EXC" \\
\hline Dynamo & 4 & Brown Brown & Dynamo (13) to voltage regulator earth (9) \\
\hline Dynamo & 5 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Dynamo \\
to voltage regulator terminal (9). "DYN " \\
to charge warning lamp (31)
\end{tabular} \\
\hline Front & 6 & Yellow Green Black Black & \begin{tabular}{l}
Fuse box (18) (fuse \(\mathrm{N}^{\circ} 1\)) \\
to windscreen wiper switch (30) \\
to windscreen wiper motor (16) (automatic stop) \\
to accessories terminal (17)
\end{tabular} \\
\hline Front & 7 & \begin{tabular}{l}
Green \\
Black \\
Red \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Fuse box (18) (fuse \(\mathrm{N}^{\circ} 2\)) \\
to rear junction \\
to stop lamp switch (22) \\
to parking lamp switch (32) \\
to clock (33) \\
to lighting switch (28)
\end{tabular} \\
\hline Front & 8 & Red Violet & Lighting switch (28) (red marking) to ignition coil (23) \\
\hline Front & 9 & \begin{tabular}{l}
Violet \\
Violet \\
Violet \\
Violet \\
Violet \\
Violet \\
Violet
\end{tabular} & \begin{tabular}{l}
Lighting switch (28) \\
to switch (27) for front heating \\
to fuel gauge (41) \\
to warning lamp (40) for brake pressure switch \\
to charge warning lamp (31) \\
to switch for direction indicators (43) \\
to thermometer (37) \\
to switch (53) for rear heating (heating \(\left.-15^{\circ} \mathrm{C}\right)\left(59^{\circ} \mathrm{F}\right)\)
\end{tabular} \\
\hline Front & 10 & Blue Blue & Windscreen wiper switch (30) to windscreen wiper motor (16) \\
\hline Front & 11 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Windscreen wiper switch (30) to windscreen wiper motor (16) \\
\hline Front & 12 & \begin{tabular}{l}
Blue \\
Violet \\
Blue
\end{tabular} & Diraction indicator switch (43) to front junction R.H. to rear junction \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{0}\) & Colour of ends & Schedule of Wiring \\
\hline Front & 13 & White Violet White & Switch (43) for direction indicators to front L.H. junction to rear junction \\
\hline Front & 14 & Green Green & Switch (43) for direction indicators to warning lamp (42) for direction indicators \\
\hline Front & 15 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Warning lamp (40) for brake pressure switch to security valve pressure switch (15) \\
\hline Front & 16 & Violet Violet & Stop lamp switch (22) to rear junction \\
\hline Front & 17 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Thermometer (37) \\
tc feed wire for thermal sensor (21)
\end{tabular} \\
\hline Front & 18 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Switch (36) for lighting and horns to front L.H. junction \\
\hline Front & 19 & \begin{tabular}{l}
White \\
White
\end{tabular} & Switch (36) for lighting and horns to front L.H. junction \\
\hline Front & 20 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow \\
Yellow \\
Blue
\end{tabular} & Switch (36) for lighting and horns to switch (35) for QI headlamps to front R.H. junction to front L.H. junction to main beam warning lamp (38) \\
\hline Front & 21 & Yellow Yellow & \begin{tabular}{l}
Switch (35) for QI headlamps \\
to relay (19) for front R.H. QI headlamp (terminal 3) \\
to relay (20) for front L.H. QI headlamp (terminal 3)
\end{tabular} \\
\hline Front & 22. & White Mauve & Relay (19) for front R.H. QI headlamp (terminal 2) to front R.H. junction \\
\hline Front & 23 & White Mauve & Relay (20) for front L.H. QI headlamp (terminal 2) to front L.H. junction \\
\hline Flying lead & 24 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & Earth to relay (19) for front R.H. QI headlamp (terminc: 4) to relay (20) for front L.H. QI headlamp (termina, 4) \\
\hline Front & 25 & \begin{tabular}{l}
Green \\
Green \\
Green
\end{tabular} & Switch (36) for lighting and horns to front R.H. junction to front L.H. junction \\
\hline Front & 26 & \begin{tabular}{l}
Mauve \\
Yellow
\end{tabular} & Switch (36) for lighting and horns to fuse box (24) \\
\hline Front & 27 & \begin{tabular}{l}
Yellow \\
Mauve \\
Red \\
Blue
\end{tabular} & \begin{tabular}{l}
Fuse box (24) \\
to rear junction \\
to rheostat (44) for instrument panel lighting to switch (32) for parking lamps
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{0}\)
\end{tabular} & Colour of ends & Schedule of Wiring \\
\hline Front & 28 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Rheostat (44) for instrument panel lighting to lamps (39) lighting instrument panel to clock lamp (33) \\
\hline Front & 29 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Switch (32) for parking lamp to front R.H. junction to rear junction \\
\hline Front & 30 & Green Red Green & Switch (32) for parking lamps to front L.H. junction to rear junction \\
\hline Front & 31 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Switch (34) for interior lamps to rear junction to switch (25) on front R.H. door pillar to switch (26) on front L.H. door pillar \\
\hline Front & 32 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Switch (27) for front heating to blower motor (14) \\
\hline Flying lead & 33 & Brown Brown Brown & \begin{tabular}{l}
Earth \\
to switch (29) for starter motor relay \\
to switch (34) for interior lamps \\
to clock (33)
\end{tabular} \\
\hline Flying lead & 34 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Ignition coil (23) to distributor \\
\hline Front R.H. & 12 & \begin{tabular}{l}
Violet \\
Violet
\end{tabular} & Front R.H. junction to R.H. direction indicator (1) \\
\hline Frent R.H. & 20 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & Front R.H. junction to front R.H. headlamp (2) (main beam) \\
\hline Front R.H. & 22 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front R.H. junction to R.H. QI headlamp (3) \\
\hline Front R.H. & 25 & Green Green & Front R.H. junction to front R.H. headlamp (2) (dip) \\
\hline Front R.H. & 29 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Front R.H. junction to front R.H. headlamp (2) (sidelamp - parking lamp) \\
\hline Front R.H. & 35 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
to R.H. direction indicator (1) \\
to front R.H. headlamp \\
to QI headlamp (3)
\end{tabular} \\
\hline Front L.H. & 13 & \begin{tabular}{l}
Violet \\
Violet
\end{tabular} & Front L.H. junction to L.H. direction indicator (8) \\
\hline Front L.H. & 18 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front L.H. junction to first country horn (5) \\
\hline Front L.H. & 19 & \begin{tabular}{l}
White \\
White
\end{tabular} & Front L.H. junction to second country horn (4) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{0}\) & \begin{tabular}{l}
Colour \\
of ends
\end{tabular} & Schedule of Wiring \\
\hline Front L.H. & 20 & \[
\begin{aligned}
& \text { Yellow } \\
& \text { Yellow }
\end{aligned}
\] & Front L.H. junction to front L.H. headlamp (7) (main beam) \\
\hline Front L.H. & 23 & Mauve Mauve & Front L.H. junction to QI headlamp (6) \\
\hline Front L.H. & 25 & Green Green & Front L.H. junction to front L.H. headlamp (7) (dip) \\
\hline Front L.H. & 30 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Front L.H. junction to front L.H. headlamp (7) (sidelamp-parking lamp) \\
\hline Front L.H. & 36 & Brown & \begin{tabular}{l}
Earth \\
to L.H. direction indicator (8) to front L.H. headlamp (7) to QI headlamp (6)
\end{tabular} \\
\hline Rear & 7 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Rear junction to interior lamp (46) \\
\hline Reas & 12 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Rear junction to rear R.H. direction indicator (49) \\
\hline Rear & 13 & White Blue & \begin{tabular}{l}
Rear junction \\
to rear L.H. direction indicator (52)
\end{tabular} \\
\hline Rear & 16 & \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} & Rear junction to rear R.H. stop lamp (50) to rear L.H. stop lamp (5l) \\
\hline Rear & 27 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Rear junction \\
to R.H. number plate lamp (50) to L.H. number plate lamp (51) to boot lamp (47)
\end{tabular} \\
\hline Rear & 29 & Red Green & Rear junction to rear R.H. parking lamp (or rear lamp) (50) \\
\hline Rear & 30 & Green Green & \begin{tabular}{l}
Rear junction \\
to rear L.H. parking lamp (or rear lamp) (51)
\end{tabular} \\
\hline Rear & 31 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Rear junction to interior lamp (46) \\
\hline Rear & 37 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & Fuel gauge (41) to rheostat (45) for fuel gauge \\
\hline Rear & 38 & \begin{tabular}{l}
Grey \\
Red
\end{tabular} & \begin{tabular}{l}
Switch (53) for rear heating (\(-15^{\circ} \mathrm{C}\)) \(\left(59^{\circ} \mathrm{F}\right)\) \\
to blower motor (54) for rear heating (\(-15^{\circ} \mathrm{C}\)) \(\left(59^{\circ} \mathrm{F}\right)\)
\end{tabular} \\
\hline & & & \begin{tabular}{l}
OPTIONAL FITTINGS : \\
1) A compressor horn is fitted on request
\end{tabular} \\
\hline Flying lead & 39 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Voltage regulator (9) ("BAT » terminal) to horn harness junction \\
\hline
\end{tabular}

OPERATION \(\dot{N}^{0}\) DV. 510.00 a : Assembly of electrical equipment.

\section*{DV}
\(\longmapsto\) September 1967 - December 1967

\section*{SCHEDULE OF PARTS.}
1. Front R.H. direction indicator lamp
2. Front R.H. headlamp
3. Front R.H. auxiliary Q.I. headlamp
4. Second country horn
5. First country horn
6. Front L.H. auxiliary Q.I. headlamp
7. Front L.H. Headlamp
8. Front L.H. direction indicator lamp
9. Voltage regulator relay
10. Starter motor relay
11. Battery
12. Starter motor
13. Alternator
14. Front heating blower motor
15. Security valve switch (brakes)
16. Windscreen wiper motor
17. R.H. fuse box
18. Terminal for accessories
19. Front R.H. Q.I. headlamp relay
20. Front L.H. Q.I. headlamp relay
21. Thermal sensor
22. Engine oil pressure switch
23. Distributor
24. Stoplamp switch
25. Ignition coil
26. L.H. fuse box
27. Switch for interior lamp operated by front R.H. door
28. Switch for interior lamp operated by front L.H. door
29. Front heating switch
30. Ignition switch
31. Starter motor relay switch
32. Windscreen wiper motor
33. Engine oil pressure warning lamp
34. Charge warning lamp
35. Parking lamp switch
36. Clock
37. Interior lamp switch
38. Q.I. headlamp switch
39. Lighting and horns switch
40. Water thermometer
41. Headlamp main beam warning lamp
42. Dashboard illumination lamp
43. Brake pressure switch warning lamp
44. Fuel gauge
45. Direction indicator warning lamp
46. Direction indicator commutator
47. Rheostat for dashboard and clock
48. Rheostat for fuel gauge unit
49. Interior lamp
50. Boot lamp
51. Boot lamp switch
52. Rear R.H. direction indicator lamp
53. R.H. number plate lamp, rear lamp and stop lamp
54. L.H. number plate lamp, rear lamp and stop lamp
55. Rear L.H. direction indicator lamp
56. Rear heating switch \}optional
57. Rear heating blower motor heating - \(59^{\circ} \mathrm{F}\)
\(\left.\begin{array}{l}\text { 58. "SANOR" relay for horn compressor } \\ \text { 59. Horn compressor }\end{array}\right\}\) optional \(\left(15^{\circ} \mathrm{C}\right)\)
60. Switch for fresh air blower motor
61. Fresh air blower mator \}optional

ELECTRICITY

OPERATION No DV. \(510-00 \mathrm{~b}\) : Arrangement of the electrical installation
Op. DV. 510.00 b
\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{n}^{0}\)
\end{tabular} & Colour of ends & Schedule of wiring \\
\hline Front & 13 & \begin{tabular}{l}
White \\
Violet \\
White
\end{tabular} & Switch (46) for direction indicators To front L.H. wing junction To rear junction \\
\hline Front & 14 & Green Green & Switch (46) for direction indicators To warning lamp (45) for direction indicators \\
\hline Front & 15 & Brown Brown & Brake pressure switch warning lamp (43) To pressure switch (15) for security valve \\
\hline Front & 16 & Violet Violet & Stop lamp switch (24) To rear junction \\
\hline Front & 17 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & \begin{tabular}{l}
Thermometer (40) \\
To feed wire for thermal sensor (21)
\end{tabular} \\
\hline Front & 18 & White White & \begin{tabular}{l}
Engine oil pressure warning lamp (33) \\
To feed wire for engine oil pressure switch (22)
\end{tabular} \\
\hline Front & 19 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Switch (39) for lighting and horns To front L.H. wing junction \\
\hline Front & 20 & White White & Switch (39) for lighting and horns. To front L.H. wing junction \\
\hline Front & 21 & \begin{tabular}{l}
Yellow \\
Yellow \\
Yellow \\
Yellow \\
Blue
\end{tabular} & Switch (39) for lighting and horns To switch (38) for auxiliary headlamps To front R.H. junction To front L.H. junction To main beam warning lamp (41) \\
\hline Front & 22 & Yellow Yellow Yellow & ```
Switch (38) for auxiliary headlamps
 To front R.H. auxiliary headlamp relay (19)(terminal 3)
 To front L.H. auxiliary headlamp relay (20) (terminal 3)
``` \\
\hline Front & 23 & White Mauve & Front R.H. auxiliary headlamp relay (19) (terminal 2 ) To front R.H. junction \\
\hline Front & 24 & \begin{tabular}{l}
White \\
Mauve
\end{tabular} & Front L.H. auxiliary headlamp relay (20) (terminal 2 ) To front L.H. junction \\
\hline Flying lead & 25 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & ```
Earth (on scuttle panel)
    To front R.H. auxiliary headlamp relay (19) (terminal 4)
    To front L.H. auxiliary headlamp relay (20) (terminal 4)
``` \\
\hline . Front & 26 & Green Green Green & Switch (39) for lighting and horns To front R.H. junction To front L.H. junction \\
\hline Front & 27 & Mauve Yellow & Switch (39) for lighting and horns To L.H. fuse box (26) \\
\hline Front & 28 & Yellow Mauve Red Blue & \begin{tabular}{l}
L.H. fuse box (26) \\
To rear junction To rheostat (47) for instrument panel lighting To switch (35) for parking lamps
\end{tabular} \\
\hline Front & 29 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Rheostat (47) for instrument panel lighting To lamps (42) lighting instrument panel To clock lamp (36) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Schedule of wiring \\
\hline Front & 30 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Switch (35) for parking lamps. To front R.H. junction To rear junction \\
\hline Front & 31 & Green Red Green & Switch (35) for parking lamps To front L.H. junction To rear junction \\
\hline Front & 32 & Brown Brown & \begin{tabular}{l}
Switch (37) for interior lamps \\
To rear junction \\
To switch (27) on front R.H. door pillar To switch (28) on front L.H. door pillar
\end{tabular} \\
\hline Front & 33 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Switch (29) for front heating To blower motor (14) \\
\hline Flying lead & 34 & Brown Brown Brown & \begin{tabular}{l}
Earth \\
To starter motor relay switch (31) To interior lamp switch (37) To clock (36)
\end{tabular} \\
\hline Flying lead & 35 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Ignition coil (25) \\
To distributor (23)
\end{tabular} \\
\hline Front R.H. & 12 & Violet Blue & \begin{tabular}{l}
Front R.H. junction \\
To R.H. direction indicator (l)
\end{tabular} \\
\hline Front R.H. & 21 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & Front R.H. junction To front R.H. headlamp (2) (main beam) \\
\hline Front R.H. & 23 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Front R.H. junction \\
To auxiliary headlamp (3)
\end{tabular} \\
\hline Front R.H. & 26 & Green Green & \begin{tabular}{l}
Front R.H. junction \\
To front R.H. headlamp (2) (dip)
\end{tabular} \\
\hline Front R.H. & 30 & Red Red & \begin{tabular}{l}
Front R.H. junction \\
To front R.H. headlamp (2) (sidelamp-parking lamp)
\end{tabular} \\
\hline Front R.H. & 36 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & \begin{tabular}{l}
Earth \\
To R.H. direction indicator (1) To front R.H. headlamp (2) To auxiliary headlamp (3)
\end{tabular} \\
\hline Front L.H. & 13 & Violet Blue & \begin{tabular}{l}
Front L.H. junction \\
To L.H. direction indicator (8)
\end{tabular} \\
\hline Front L.H. & 19 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front L.H. junction To first country horn (5) \\
\hline Front L.H. & 20 & White White & \begin{tabular}{l}
Front L.H. junctiori \\
To second country horn (4)
\end{tabular} \\
\hline Front L.H. & 21 & \begin{tabular}{l}
Yellow \\
Yellow
\end{tabular} & \begin{tabular}{l}
Front L.H. junction \\
To front L.H. headlamp (7) (main beam)
\end{tabular} \\
\hline Front L.H. & 24 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Front L.H. junction \\
To auxiliary headlamp (6)
\end{tabular} \\
\hline Front L.H. & 26 & Green Green & \begin{tabular}{l}
Front L.H. junction \\
To front L.H. headlamp (7) (dip)
\end{tabular} \\
\hline Front L.H. & 31 & Red & \begin{tabular}{l}
Front L.H. junction \\
To front L.H. headlamp (7) (sidelamp-parking lamp)
\end{tabular} \\
\hline
\end{tabular}
ELECTRICITY

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\mathrm{o}}\) & Colour of ends & Wiring schedule \\
\hline Front L.H. & 37 & Brown & \begin{tabular}{l}
Earth \\
To L.H. direction indicator (8) To front L.H. headlamp (7) To secondary headlamp (6)
\end{tabular} \\
\hline Rear & 7 & Black Black & Rear junction To interior lamp (49) \\
\hline Rear & 12 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Rear junction To rear R.H. direction indicator light (52) \\
\hline Rear & 13 & White Blue & Rear junction To rear L.H. direction indicator light (55) \\
\hline Rear & 16 & \begin{tabular}{l}
Violet \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To rear R.H. stoplamp (53) \\
To rear L.H. stoplamp (54)
\end{tabular} \\
\hline Rear & 28 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Rear junction \\
To L.H. number plate lamp (53) \\
To R.H. number plate lamp (54) To boot lamp (50)
\end{tabular} \\
\hline Rear & 30 & Red Green & \begin{tabular}{l}
Rear junction \\
To parking lamp or rear R.H. lamp (53)
\end{tabular} \\
\hline Rear & 31 & Green Green & \begin{tabular}{l}
Rear junction \\
To parking lamp or rear L.H. lamp (54)
\end{tabular} \\
\hline Rear & 32 & Brown Brown & Rear junction Interior lamp (49) \\
\hline Rear & 38 & Yellow Yellow & \begin{tabular}{l}
Fuel gauge (44) \\
To fuel gauge rheostat (48)
\end{tabular} \\
\hline Rear & 39 & Grey Red & \(\left.\begin{array}{l}\text { Rear heating }\left(-59^{\circ} \mathrm{F}\right) \text { switch (56) } \\ \text { To blower motor (57) for rear heating }\left(-59^{\circ} \mathrm{F}\right)\end{array}\right\}\) Option \\
\hline Flying lead & 40 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & \begin{tabular}{l}
OPTIONAL FITTINGS \\
1) An air horn is fitted if desired Voltage regulator (9) (terminal "BAT") To horn harness junction
\end{tabular} \\
\hline Compressor Horn & 41 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Horn harness junction To relay "SANOR" (58) (terminal 1) \\
\hline Compressor Horn & 42 & White Yellow & \begin{tabular}{l}
Second rood horn (4) \\
To relay "SANOR" (58) (terminal 3)
\end{tabular} \\
\hline Compressor Horn & 43 & White White & Relay "SANOR" (58) (terminal 2) To compressor (59) \\
\hline Compressor Horn & 44

9 & \begin{tabular}{l}
Brown \\
Mauve \\
Brown \\
Violet
\end{tabular} & \begin{tabular}{l}
Earth \\
To relay "SANOR" (58) (terminal 4) \\
To compressor (59) \\
2) A fresh air blower is fitted if desired A violet jumper lead (9) feeds switch (60)
\end{tabular} \\
\hline Flying lead & 45 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Fresh air blower switch (60) To fresh air blower (61) \\
\hline
\end{tabular}

\section*{MARKING OF PARTS}

1-Front R.H. direction indicator.
2 - Front R.H. headlamp.
3-Front R.H. auxiliary headlamp.
4-R.H. country horn. (DJ)
5-L.H. country horn.
6 - First country horn.
7 - Front L.H. auxiliary headlamp.
8 -Front L.H. headlamp.
9-Front L.H. direction indicator.
10-Front R.H. brake unit.
11 - Solenoid starter motor.
12-Alternator.
13-Coolant temperature thermal switch.
14-Front L.H. brake unit.
15-Relay-tension regulator unit.
16-Starter motor relay.
17-Heating (\(\left.-5^{\circ} \mathrm{C}\right)-\left(41^{\circ} \mathrm{F}\right)\)
18-Battery.
19- Switch on front R.H. pillar.
20- Windscreen washer pump.
21 - Windscreen wiper motor.
22-Brake pressure switch (DX-DJ-DV).
23 - Stop lamp switch.
24 - Distributor.
25-Engine oil pressure switch.
26-Ignition coil.
27-Fuse box.
28 - Security valve pressure switch (DT-DV),
29-Switch on front L.H. door pillar.

30-Terminal for accessories.
31-Flasher unit.
32 - Starter motor relay switch (DX - DY).
33-Relay for headlamps.
34-Rheostat for lamps lighting instrument panel.
35-Glove compartment lighting (Pallas)
36-Cigar lighter.
37-Switch for heated rear window (optional).
38-Switch for heating.
39-Clock (except D.V.).
40-Switch for interior lamps.
41 - Switch for parking lamps.
42 - Lighting for heating control (Pallas)
43-Lighting switch.
44 - Warning lamp cluster.
45-Switch for direction indicators.
46-Switch for windscreen wipers and washers
47 - Ignition switch.
48-R.H. lateral interior lamp.
49-Fuel gauge sender.
50-Heated rear window (optional).
51 - L.H. lateral interior lamp.
52 - Boot lamp.
53 - Rear R.H. interior lamp (DJ except Pallas)
54 - Rear L.H. interior lamp (DJ except Pallas)
55-Rear R.H. direction indicator.
56-Rear R.H. number plate lamp, stop lamp and rear lamp.
57 - Rear L.H. number plate lamp, stop lamp and rear lamp.
58 - Rear L.H. direction indicator.
59 Horn compressor relay (optional)
60 - Horn compressor (optional)
\begin{tabular}{|c|c|c|c|}
\hline Harness & \[
\begin{aligned}
& \text { Wire } \\
& \mathrm{N}^{\circ}
\end{aligned}
\] & Colour of ends & Schedule of Wiring \\
\hline Front & 1 & \begin{tabular}{l}
White \\
Red
\end{tabular} & Starter motor switch (47) to starter motor lead \\
\hline Front & 2 & \begin{tabular}{l}
Black \\
Black \\
Green \\
Red \\
Blue \\
Red \\
Black \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
" + ve " terminal of the battery (18) to " + " alternator terminal (12) to fuse box (27) (fuse \(\mathrm{N}^{\circ}\) 1) \\
to fuse box (27) (fuse \(\mathrm{N}^{\circ} 2\)) \\
to fuse box (27) (fuse \(\mathrm{N}^{\circ} 3\)) \\
to iqnition switch (47) (connector) to flying lead junction (2) (near 45) to lighting switch (43) \\
to headlamp relay (33) \\
to switch (45) for direction indicators
\end{tabular} \\
\hline Front & 3 & \begin{tabular}{l}
Brown \\
Red \\
Mauve
\end{tabular} & \begin{tabular}{l}
Single lead (near 47) \\
to relay-temsion requlator unit (15) (terminal L) \\
to warning lamp cluster (44) (greem casing) battery charge light
\end{tabular} \\
\hline Front & 4 & \begin{tabular}{l}
Green \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Fuse box (27) (fuse \(\mathrm{N}^{\circ}\) 1) \\
to ignition switch (47)(connector) \\
to cigar lighter (36) \\
to rear harness junction
\end{tabular} \\
\hline Front & 5 & \begin{tabular}{l}
Red \\
Green \\
Black \\
Black \\
Red
\end{tabular} & \begin{tabular}{l}
Fuse box (27) (fuse \(\mathrm{N}^{\circ}\) 2) \\
to ignition switch (47) (connector) \\
to terminal for accessories (30) \\
to clock (39) \\
to stop lamp switch (23)
\end{tabular} \\
\hline Front & 6 & \begin{tabular}{l}
Blue \\
Black
\end{tabular} & Fuse box (27) (fuse \(\mathrm{N}^{\circ} 3\)) to switch (41) for parking lamps \\
\hline Front & 7 & Blue Violet & Ignition switch (47) (connector) to ignition coil (26) \\
\hline Front & 8 & \begin{tabular}{l}
Yellow \\
Black \\
Violet \\
Black
\end{tabular} & \begin{tabular}{l}
Ignition switch (47) (connector) \\
to switch (37) for heated rear window (optional) \\
to relay-tension requlator unit (15) (terminal «BOB») \\
to flasher unit (31) (terminal " + ")
\end{tabular} \\
\hline Front & 9 & \begin{tabular}{l}
Mauve \\
Blue \\
Black \\
Black \\
Black
\end{tabular} & \begin{tabular}{l}
Ignition switch (47) (connector) \\
to heating switch (38) \\
to windscreen wiper switch (46) (connector) \\
to feed lead for warning lamp cluster (44) (yellow housing) \\
to windscreen wiper motor (21) (automatic stop)
\end{tabular} \\
\hline Front & 10 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Ignition coil (26) \\
to warning lamp cluster (44) (tachometer) (yellow housing)
\end{tabular} \\
\hline Front & 11 & Yellow Yellow & Relay voltage regulator unit (15) (terminal "EXC») to alternator (12) (terminal "EXC ») \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\mathrm{o}}\) & Colour of ends & Schedule of Wiring \\
\hline Front & 12 & White White & Alternator (12) (terminal R) to relay - voltage regulator unit (15) (terminal R) \\
\hline Front & 13 & \begin{tabular}{l}
Mauve \\
Yellow \\
Mauve
\end{tabular} & \begin{tabular}{l}
Lighting switch (43) \\
to fusebox (27) (fuse \(\mathrm{N}^{0} 4\)) \\
to lighting for heating controls (42) (Pallas)
\end{tabular} \\
\hline Front & 14 & \begin{tabular}{l}
Yellow \\
Blue \\
Red \\
Black \\
Mauve
\end{tabular} & \begin{tabular}{l}
Fuse box (27) (fuse \(\mathrm{N}^{\circ} 4\)) \\
to switch (41) for parking lamps \\
to rheostat (34) for lamps lighting instrument panel \\
to warning lamp cluster (44) (green housing) (warning lamps) \\
to rear harness
\end{tabular} \\
\hline Front & 15 & \begin{tabular}{l}
Red \\
Red \\
Red
\end{tabular} & Switch (41) for parking lamps to front R.H. wing harness to rear harness \\
\hline Front & 16 & \begin{tabular}{l}
Green \\
Red \\
Green
\end{tabular} & Switch (41) for parking lamps to front L.H. wing harness to rear harness \\
\hline Front & 17 & \begin{tabular}{l}
Green \\
Green \\
Green
\end{tabular} & Lighting switch (43)(dipped) to front L.H. wing harness to front R.H. wing harness \\
\hline Front & 18 & Yellow Yellow & Lighting switch (43) to headlamp relay (33) \\
\hline Front & 19 & \begin{tabular}{l}
Red \\
Mauve \\
Mauve
\end{tabular} & \begin{tabular}{l}
Lighting switch (43) (auxiliary headlamps) \\
to front L.H. wing harness \\
to front R.H. wing hamess
\end{tabular} \\
\hline Front & 20 & \begin{tabular}{l}
White \\
Blue \\
Yellow \\
Yellow \\
Brown
\end{tabular} & \begin{tabular}{l}
Headlamp relay (33) \\
to warning lamp cluster (44) (green housing) (main beam \\
to front L. H. winc harness warning lamp) \\
to front R.H. wing harness \\
to direction indicator switch (45)
\end{tabular} \\
\hline Front & 21 & \begin{tabular}{l}
Violet \\
Red
\end{tabular} & Flasher unit (31) to direction indicator switch (45) \\
\hline Front & 22 & White White & Switch for direction indicators (45) to front L.H. wing harness \\
\hline Front & 23 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Switch (45) for direction indicators to front L.H. wing harness \\
\hline Front & 24 & \begin{tabular}{l}
Green \\
Green \\
Violet \\
Blue
\end{tabular} & \begin{tabular}{l}
Switch (45) for direction indicators \\
to warning lamp cluster (44) (white housing) (R.H. irdicator warning lump) \\
to front R.H. wing harness \\
to rear harness
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends & Schedule of Wiring \\
\hline Front & 25 & \begin{tabular}{l}
Yellow Yellow \\
Violet White
\end{tabular} & \begin{tabular}{l}
Switch (45) for direction indicators \\
to warning lamp cluster (44) (white housing) (L.H. indicator warning lamp) \\
to front L.H: wing harness \\
to rear harness
\end{tabular} \\
\hline Front & 26 & \begin{tabular}{l}
Mauve \\
Red
\end{tabular} & Windscreen wiper switch (46) to windscreen washer pump (20) \\
\hline Front & 27 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Windscreen wiper switch (46)(connector) to windscreen wiper motor (21) \\
\hline Front & 28 & \begin{tabular}{l}
White \\
White
\end{tabular} & Windscreen wiper switch (46)(connector) to windscreen wiper motor (21) \\
\hline Front & 29 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Windscreen wiper switch (46)(connector) to windscreen wiper motor (21) \\
\hline Front & 30 & Red Green Red & Rheostat (34) for lamps lighting instrument panel to warning lamp cluster lighting (44) (yellow housing) to clock lamp (39) \\
\hline Front & 31 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Switch (38) for heating to heating \(-5^{\circ} \mathrm{C}\left(-41^{\circ} \mathrm{F}\right)(17)\) \\
\hline Front & 32 & \begin{tabular}{l}
Grey \\
Grey \\
Red
\end{tabular} & \begin{tabular}{l}
Switch (37) for heated rear window (optional) \\
to rear harness \\
to warning lamp cluster (44) (green housing) (warning lamp for heated window)
\end{tabular} \\
\hline Front & 33 & \begin{tabular}{l}
Violet \\
Violet
\end{tabular} & Stop lamp switch (23) to rear harness \\
\hline Front & 34 & \begin{tabular}{l}
Brown \\
White \\
White \\
Black
\end{tabular} & Rear harness junction to switch on R.H. door pillar (19) to switch on L.H. door pillar (29) to switch (40) for interior lamps \\
\hline Front & 35 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Warning lamp cluster (44) (green housing) (brake warning lamp) to brake pressure switch (DJ) (22) or (28) security valve (DT.DV) \\
\hline Front & 37 & Blue
Blue & \begin{tabular}{l}
Warning lamp cluster (44) (white housing) (water temperature warning lamp) \\
to thermal switch (13) flying lead
\end{tabular} \\
\hline Front & 38 & Grey
Grey & \begin{tabular}{l}
Warning lamp cluster (44) (white housing) (brake pad wear warning lamp) \\
to front L.H. wing harness
\end{tabular} \\
\hline Front & 39 & \begin{tabular}{l}
White \\
White
\end{tabular} & \begin{tabular}{l}
Warning lamp cluster (44) (white housing) (oil pressure warning lamp) \\
to flying lead for oil pressure switch (25)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\mathrm{o}}\)
\end{tabular} & Colour of ends & Schedule of Wiring \\
\hline Front L.H. & 17 & Green Green & Front harness to front L.H. headlamp (8) (dip) \\
\hline Front L.H. & 19 & \begin{tabular}{l}
Mauve \\
Mauve
\end{tabular} & Front harness to auxiliary L.H. headlamp (7) \\
\hline Front L.H. & 20 & Yellow Yellow & Front harness to front L.H. headlamp (8) (main beam) \\
\hline Front L.H. & 22 & White White White & \begin{tabular}{l}
Front harness to left horn (5) \\
to right horn (4) (DJ)
\end{tabular} \\
\hline Front L.H. & 23 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front harness to first horn (6) \\
\hline Front L.H. & 25 & Violet Blue & Front harness to front L.H. direction indicator (9) \\
\hline Front L.H. & 38 & \begin{tabular}{l}
Grey \\
Grey
\end{tabular} & Front harness to flying lead for brake pads (DJ) \\
\hline Flying lead & 38 & \begin{tabular}{l}
Grey \\
Grey
\end{tabular} & Front L.H. harness to brake pads (10) and (14) (DJ) \\
\hline Front L. H. & 42 & \begin{tabular}{l}
Brown \\
Brown \\
Brown \\
Brown
\end{tabular} & Small unit joint earth to L.H. auxiliary headlamp (7) to front L.H. headlamp (8) to front L.H. direction indicator (9) \\
\hline Rear & 4 & \begin{tabular}{l}
Black \\
Black
\end{tabular} & Front harness junction to interior lamps (48), (51), (53) and (54) ((DJ except PA) \\
\hline Rear & 14 & \begin{tabular}{l}
Mauve \\
Mauve \\
Mauve
\end{tabular} & Front harness junction to boot lamp (52) to rear R.H. number plate lamp (56) to rear L.H. number plate lamp (57) \\
\hline Rear & 15 & Red Green & Front harness junction to rear R.H. sidelight (56) \\
\hline Rear & 16 & Green Green & Front harness junction to rear L.H. sidelight (57) \\
\hline Rear & 24 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Front harness junction to rear R.H. direction indicator (55) \\
\hline Rear & 25 & \begin{tabular}{l}
White \\
Blue
\end{tabular} & Front harness junction to rear L.H. direction indicator (58) \\
\hline Rear & 32 & Grey & Front harness junction to heated rear window (50) (cptional) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{0}\) & Colour of ends & Schedule of Wiring \\
\hline Rear & 33 & \begin{tabular}{l}
Violet Red \\
Red
\end{tabular} & Front harness junction to rear R.H. stop light (56) to rear L.H. stop light (57) \\
\hline Rear & 34 & \begin{tabular}{l}
Brown \\
Brown
\end{tabular} & Front hamess junction to each interior light (48), (51), and (53), (54) (DJ except PA) \\
\hline Rear & 40 & Yellow Yellow & Front harness junction to fuel gauge transmitter (49) \\
\hline Flying lead & 44 & & Earth for heated rear window (50) (screw on R.H. panel) \\
\hline Flying lead & 2 & \begin{tabular}{l}
Rlack \\
Black
\end{tabular} & Battery (18) to compressor relay (59) \\
\hline Horn harness & 22 & Yellow White & Compressor relay (59) to horn wire junction (4) \\
\hline & 45 & \begin{tabular}{l}
White \\
White
\end{tabular} & Compressor relay (59) to compressor (60) \\
\hline & 46 & Mauve & \begin{tabular}{l}
Compressor relay (59) \\
to compressor (60) and earth (fixing screw)
\end{tabular} \\
\hline Flying lead & 2 & \begin{tabular}{l}
Black \\
Black \\
Brown
\end{tabular} & \begin{tabular}{l}
Lighting switch(43) \\
to frent harness junction (near 45) to starter motor switch (47)
\end{tabular} \\
\hline
\end{tabular}

DIAGRAM OF THE SYSTEM
DBW. VE:HCLES, ALL TYPES

BASIC DIAGRAM

NOTE:-Dbw vehicles (i.e vith BORG-NARNER yearboxes) are fitted with the hasicharnenses of the hydralic gearchange vehicles produced since september 19:1 (see Op. Dh. 510-00 a) and the additional harness above.
- In Dbw vehicles the starter control is on the anti-theft device, instead of being on the gear lever as on hydraulic gearchange vehicles.

\section*{REFERENCE NUMBERS OF THE PARTS.}

The references for those parts common to both systems are identical to those indicated in the electronics diagram Dh. 510-00 a. The additional parts are as follows:
66. Fan relay (on battery frame)
68. Thermal switch for radiator water
67. Cooler fon
69. Switch for reversing lamps and starter motor safety

VEHICLES WITH MANUAL GEARCHANGE
DJ, DJ. IE, DV, DT \(\longmapsto\) Ipril 1971
BULB TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESCRIPTION} & \multirow[b]{2}{*}{Quantity} & \multirow[b]{2}{*}{Base} & \multirow[b]{2}{*}{Type} & \multirow[b]{2}{*}{Voltage} & \multirow[b]{2}{*}{Power} & \multicolumn{2}{|c|}{Norm} \\
\hline & & & & & & French & Intern. \\
\hline Headlamp-Dip & 1 & P 45 t 41 & Yellow selective & 12 V & 45/40 W & R 136.15 & \\
\hline \multirow[t]{2}{*}{Auxiliary headlamps} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 \\
& \text { or } \\
& 2
\end{aligned}
\]} & P 45 t 41 & Yellow selective & 12 V & 45/40 W & R 136.15 & \\
\hline & & P 14.5 s & Quartz iodine & 12 V & 55 W & R 136.16 & \\
\hline Front indicators Rear indicators Stop lights & 6 & BA 15s/19 & \[
\begin{gathered}
\text { P } 25 / 1 \\
\text { Pear-shaped } \\
\text { bulb }
\end{gathered}
\] & 12 V & 21 W & R 136.12 & P 25/l \\
\hline Rear side-lights Number plate lamp Spare bulb & 6 & BA 15s/19 & R 19.5 & 12 V & 5 W & R 136.13 & R 19/5 \\
\hline Front side-lights & 2 & BA 9s & T 8/4 & 12 V & 4 W & R 136.33 & T 8/4 \\
\hline \begin{tabular}{lc}
& DJ \\
Interior & DV-DT
\end{tabular} & 4
2 & Festoon & & 12 V & 7 W & R 136.05 & \\
\hline Pallas & 2 & BA 15s & & 12 V & 15 W & & \\
\hline Boot light & & Festoon & C 11 & 12 V & 5 W & R 136.14 & C 11 \\
\hline \begin{tabular}{l}
On Pallas : lighting \\
\(\therefore\) Heating control \\
- Glove box
\end{tabular} & 2 & \multirow{3}{*}{BA 9s} & \multirow{3}{*}{T 8/2} & \multirow{3}{*}{12 V} & \multirow{3}{*}{2 W} & \multirow{3}{*}{R 136.34} & \multirow[t]{3}{*}{} \\
\hline Clock lamp & 1 & & & & & & \\
\hline Warning lamp cluster Headlamp check light Sidelight check light Heated rear window & 3 & & & & & & \\
\hline \multicolumn{8}{|l|}{Warning lamp cluster} \\
\hline Other check lights & 8 & \multirow[t]{2}{*}{Wedge base} & \multirow[t]{2}{*}{\(\phi 10 \mathrm{~mm}\)} & \multirow[t]{2}{*}{14 V} & \multirow[t]{2}{*}{3 W} & & \\
\hline Dashboard lighting & 2 & & & & & & \\
\hline
\end{tabular}

NOTE: Keep this page open whilst reading the operation

\section*{P.T.O}

WIRING DIAGRAM
DI - DT - DV since tpril 1971

\section*{FUSE TABLE}

\author{
VEHICLES D. IE.ALL TYPES \\ \(\rightarrow\) March 1970
}

\section*{ARRANGEMENT OF THE ELECTRICAL INSTALLATION OF THE ELECTRONIC FUEL INJECTION SYSTEM}
(Vehicles produced up to March 1970)
NOTE : For the arrangement of the general
electrical installation: see Op. DX. 510-00 F

DIAGRAM SHOWING PRINCIPLES OF STARTER MOTOR CONTROL

- 2 : Battery
- 3 : General feed relay
- 4 : Fuel pump relay
- 5 : Impulsion relay
- 7 : Time delay thermal switch (cold start)
- 8 : Starter motor control relay
- 9 : Cold start injector
-15: Ignition coil
-18: Electronic control unit
- 19 : Fuel pump
- A: Ignition switch of vehicle
- B : Starter motor switch
- C : Charging warning light
- D : Relay voltage regulator relay
- E : Starter motor

\section*{PART SCHEDULE}
1. Ignition distributor and triggering contacts
2. Battery
3. General feeder relay
4. Pump relay
5. Impulse relay
6. Thermal sensor
7. Cold start time delay thermal switch
8. Starter motor control relay
9. Cold start injector
10. Throttle-spindle switch
11. Injector \(\mathrm{N}^{\circ} 1\) cylinder
12. Injector \(\mathrm{N}^{0} 2\) cylinder
13. injector \(\mathrm{N}^{\circ} 3\) cylinder
14. Injector \(\mathrm{N}^{\circ} 4\) cylinder
15. Ignition coil
16. Full-load switch
17. Pressure sensor
18. Electronic control unit
19. Fuel pump
A. Vehicle ignition switch
B. Starter motor switch
WIRING DIAGRAM
Electronic fuel injection system

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
No
\end{tabular} & Colour of ends & Wiring schedule \\
\hline Electronic control unit & 1 & \begin{tabular}{l}
Black \\
Black \\
Black \\
Black \\
Yellow
\end{tabular} & Starter motor control relay (8) (+ ve battery) to general feeder relay (3) (terminal 30/51) to pump relay (4) (terminal 30/51) to impulse relay (5) (terminal 30/51) to impulse relay (5) (terminal 85) \\
\hline -do- & 2 & \begin{tabular}{l}
Yellow-brown \\
Brown \\
White \\
Mauve
\end{tabular} & \begin{tabular}{l}
Electronic control unit (18) (terminal 16) \\
Electronic control unit (18) (terminal 24) to general feeder relay (3) (terminal 87) to pump relay (4) (terminal 86)
\end{tabular} \\
\hline -do- & 3 & Mauve Violet & General feeder relay (3) (terminal 86) to ignition coil (15) (+ve terminal) (vehicle ignition switch A) \\
\hline -do- & 4 & Yellow Yellow & Pump relay (4) (terminal 85) to electronic control unit (18) (terminal 19) \\
\hline -do- & 5 & \begin{tabular}{l}
White \\
White
\end{tabular} & Pump relay (4) (terminal 87) to fuel pump feed wire (19) \\
\hline -do- & 6 & \begin{tabular}{l}
Mauve \\
Red \\
Red
\end{tabular} & ```
Impulse relay (5) (terminal 86)
 to starter motor control relay (8)
 to front cables of vehicle (starter motor switch B)
``` \\
\hline -do- & 7 & \begin{tabular}{l}
Violet \\
White \\
Violet \\
Blue
\end{tabular} & ```
Electronic control unit (18) (terminal 18)
    to impulse relay (5) (terminal 87)
    to cold-start injector (9)
    to cold start time delay thermal switch (7)
``` \\
\hline -do- & 8. & Green-grey Grey & Electronic control unit (18) (terminal 7) to pressure sensor (17) (terminal 7) \\
\hline -do- & 9 & Green-brown Brown & Electronic control unit (18) (terminal 8) to pressure sensor (17) (terminal 8) \\
\hline -do- & 10 & Yellow-violet Violet & Electronic control unit (18) (terminal 10) to pressure sensor (17) (terminal 10) \\
\hline -do- & 11 & Yellow-green Yellow & Electronic control unit (18) (terminal 15) to pressure sensor (17) (terminal 15) \\
\hline -do- & 12 & Red-blue Blue & Electronic control unit (18) (terminal 2) to full lad switch (16) \\
\hline -do- & 13 & Yellaw-white Yellow & Electronic control unit (18) (terminal 9) to throttle spindle switch (10). \\
\hline -do- & 14 & \begin{tabular}{l}
Blue \\
Blue
\end{tabular} & Electronic control unit (18) (terminal 20) to throttle spindle switch (10) \\
\hline
\end{tabular}
WIRING DIAGRAM
Electronic fuel injection system

\begin{tabular}{|c|c|c|c|}
\hline Harness & \begin{tabular}{l}
Wire \\
\(\mathrm{N}^{\circ}\)
\end{tabular} & \begin{tabular}{l}
Colour \\
of ends
\end{tabular} & Wiing diagram \\
\hline Electronic control unit & 15 & Yellow-grey Grey & Electronic control unit (18) (terminal 14) to throttle spindle switch (10) \\
\hline -do- & 16 & White White & Electronic control unit (18) (terminal 17) to throttle spindle switch (10) \\
\hline -do- & 17 & Grey Grey & \begin{tabular}{l}
Cold-start injector (9) \\
to cold- start time delay thermal switch (7)
\end{tabular} \\
\hline -do- & 18 & \begin{tabular}{l}
Green \\
Green
\end{tabular} & Electronic control unit (18) (terminal 23) to thermal sensor (6) \\
\hline -do- & 19 & Yellow-red Yellow & Electronic control unit (18) (terminal 12) to ignition distributor and triggering contacts (1) \\
\hline -do- & 20 & \begin{tabular}{l}
Red \\
Red
\end{tabular} & Electronic control unit (18) (terminal 21) to ignition distributor and triggering contacts (1) \\
\hline -do- & 21 & Grey Grey & Electronic control unit (18) (terminal 22) to ignition distributor and triggering contacts (1) \\
\hline -do- & 22 & Green-white White & Electronic control unit (18) (terminal 3) to injector (11) cylinder 1 \\
\hline -do- & 23 & Green-blue Blue & Electronic control unit (18) (terminal 5) to injector (12) cylinder 2 \\
\hline -do- & 24 & Green-violet Violet & Electronic control unit (18) (terminal 4) to injector (13) cylinder 3 \\
\hline -do- & 25 & \begin{tabular}{l}
Green-red \\
Red
\end{tabular} & Electronic control unit (18) (terminal 6) to injector (14) cylinder 4 \\
\hline -do- & 26 & Yellow-blue

Yellow & Electronic control unit (18) (terminal 11) to full load switch (16) to injector (11) cylinder 1 to injector (12) cylinder 2 to injector (13) cylinder 3 to injector (14) cylinder 4 to general feeder relay (3) (terminal 85) to thermal sensor (6) to earth (on voltage regulator-relay) \\
\hline Flying lead & 27 & & Fuel pump (19) to earth on side member \\
\hline
\end{tabular}

\section*{ARRANGEMENT OF THE ELECTRICAL INSTALLATION OF THE ELECTRONIC FUEL INJECTION SYSTEM}
(Vehicles produced between March 1970 and April 1971)
NOTE : For the arrangement of the general electrical installation:
see Op. DX. 510-00 i

\section*{DIAGRAM SHOWING PRINCIPLES OF STARTER MOTOR CONTROL}

KEY
NOTE : The markings on the components are identical to those used in the wiring diagrams
- 2 : Battery
- 3 : General feed relay
- 4: Fuel pump relay
- 5 : Impulsion relay
- 7. Time delay thermal switch (cold start)
- 8 : Starter motor control relay
- 9 : Cold start injector
- 15 : Ignition coil
- 18 : Electronic control unit
- 19 : Fuel pump

A : Ignition switch of vehicle
- B : Starter motor switch
- C : Charging warning light
- D : Relay voltage regulator relay
- E : Starter motor

\section*{PART SCHEDULE}
1. Ignition distributor and triggering contacts
2. Battery
3. General feeder relay
4. Pump relay
5. Impulse relay
6. Thermal sensor
7. Cold start time delay thermal switch
8. Starter motor control switch
9. Cold start injector
10. Throttle spindle switch
11. Injector cylinder 1
12. Injector cylinder 2
13. Injector cylínder 3
14. Injector cylinder 4
15. Ignition coil
16. Full load switch
17. Pressure sensor
18. Electronic control unit
19. Fuel pump
20. 12-way union
A. Vehicle ignition switch
B. Starter motor switch
\(-\frac{\text { WIRING DIAGRAM }}{\text { Electronic fuel injection sys }}\)

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends or self-adhesive number & Wiring schedule \\
\hline Electronic control unit & 1 & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & Cold start injector (9) to 12 -way union (20) \\
\hline -do- & 2 & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & Electronic control unit (18) (terminal 2) to full load switch (16) \\
\hline -do- & 3 & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & Electronic control unit (18) (terminal 3) to 12 -way union (20) \\
\hline -do- & 4 & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & Electronic control unit (18) (terminal 4) to 12 -way union (20) \\
\hline -do- & 5 & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & Electronic control unit (18) (terminal 5) to 12 -way union (20) \\
\hline -do- & 6 & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] & Electronic control unit (18) (terminal 6) to 12 -way union (20) \\
\hline -do- & 7 & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & Electronic control unit (18) (terminal 7) to pressure sensor (17) (terminal 7) \\
\hline -do- & 8 & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & Electronic control unit (18) (terminal 8) to pressure sensor (17) (terminal 8) \\
\hline -do- & 9 & \[
\begin{aligned}
& 9 \\
& 9
\end{aligned}
\] & Electronic control unit (18) (terminal 9) to throttle spindle switch (10) \\
\hline -do- & 10 & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & Electronic control unit (18) (terminal 10) to pressure sensor (17) (terminal 10) \\
\hline -do- & 11 & \begin{tabular}{l}
\[
11
\]
\[
11
\] \\
yellow
\end{tabular} & Electronic control unit (18) (terminal Il) earth to 12 -way union (20) to full load switch (16) to general feeder relay (3) (terminal 85) \\
\hline -do- & 12 & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & Electronic control unit (18) (terminal 12) to 12 -way union (20) \\
\hline -do- & 13 & 13 & 12-way union (20) \\
\hline -do- & 14 & \[
\begin{aligned}
& 14 \\
& 14
\end{aligned}
\] & Electronic control unit (18) (terminal 14) to throttle spindle switch (10) \\
\hline -do- & 15 & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & Electronic control unit (18) (terminal 15) to pressure sensor (17) (terminal 15) \\
\hline -do- & 16 & \begin{tabular}{l}
\[
16
\] \\
mauve
\end{tabular} & Electronic control unit (18) (terminal 16) to pump relay (4) (terminal 86) to junction on lead 24 \\
\hline -do- & 17 & \[
\begin{aligned}
& 17 \\
& 17
\end{aligned}
\] & Electronic control unit (18) (terminal 17) to throttle spindle switch (10) \\
\hline
\end{tabular}

Electronic fuel injection system

\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & colour of ends or self-adhesive number & Wiring schedule \\
\hline Electronic control unit & 18 & \[
\begin{gathered}
18 \\
18 \\
\text { White }
\end{gathered}
\] & Electronic control unit (18) (terminal 18) to cold start injector (9) to impulse relay (5) (terminal 87) \\
\hline -do - & 19 & \[
\begin{gathered}
19 \\
\text { Yellow }
\end{gathered}
\] & Electronic control unit (18) (terminal 19) to pump relay (4) (\(t \in\) :minal 85) \\
\hline -do- & 20 & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & Electronic control unit (18) (terminal 20) to throttle spindle switch (10) \\
\hline - do - & 21 & \[
\begin{aligned}
& 21 \\
& 21
\end{aligned}
\] & Electronic control unit (18) (terminal 21) to 12 -way union (20) \\
\hline -do- & 22 & \[
\begin{aligned}
& 22 \\
& 22
\end{aligned}
\] & Electronic control unit (18) (terminal 22) to 12 -way union (20) \\
\hline -do- & 23 & \[
\begin{aligned}
& 23 \\
& 23
\end{aligned}
\] & Electronic control unit (18) (terminal 23) to 12 -way union (20) \\
\hline -do- & 24 & \begin{tabular}{l}
24 \\
White
\end{tabular} & Electronic control unit (18) (terminal 24) to general feeder relay (3) (terminal 87) \\
\hline -do- & 25 & \begin{tabular}{l}
Black \\
Black \\
Black \\
Black \\
Yellow
\end{tabular} & \begin{tabular}{l}
Starter motor control relay (8) f+ ve battery) \\
to general feeder relay (3) (terminal 30/51) \\
to pump relay (4) (terminal 30/51) \\
to impulse relay (5) (terminal 30/51) \\
to impulse relay (5) (terminal 85)
\end{tabular} \\
\hline -do- & 26 & Mauve Mauve & Ignition coil (15) (+ ve terminal) (ignition switch A of vehicle) to general feeder relay (3) (terminal 86) \\
\hline -do- & 27 & White White & Pump relay (4) (terminal 87) to fuel pump feeder wire (19) \\
\hline -do- & 28 & \begin{tabular}{l}
Mauve \\
Red \\
Red
\end{tabular} & Impulse relay (5) (terminal 86) to starter motor control relay (8) to vehicle front cables (starter motor switch B) \\
\hline Flying lead & 29 & & Fuel pump (19) to earth on R.H. sidemember \\
\hline Engine & 1 & \[
\begin{gathered}
1 \\
\text { Grey }
\end{gathered}
\] & 12-way union (20) to cold start time delay thermal switch (7) \\
\hline -do- & 3 & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & 12-way union (20) to injector (11) cylinder 1 \\
\hline -do- & 4 & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & 12-way union (20) to injector (13) cylinder 3 \\
\hline -do- & 5 & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & 12-way union (20) to injector (12) cylinder 2 \\
\hline
\end{tabular}

\title{
fitting the electrical installation
}

\section*{New presentation of the "fitting the electrical installation" Operations: \\ Henceforth these operations will consist of two parts: \\ - an installation diagram identical to the previous wiring diagram.}

\section*{Advantages of the basic diagram:}
- It clearly indicates the circuits constituting the different functions of the installation.
- It facilitates the location of faults.

\section*{PRESENTATION OF THE DIAGRAMS}

\section*{1. BASIC DIAGRAM}
a) Details: The different circuits are represented in a functional way. Certain parts used in several circuits are therefore "exploded" into several parts placed on different lines.
b) References : Three kirds of references are used: the figures which refer to single parts (and not the wires)
- the letters AD, AG, AR which refer to the harnesses
- the other letters (Bc, F.Gr, FN.BI. . .) indicate the colour of the wire sleeves.

NOTE: For these last references there are 4 possible cases :
- Colourcd sheere on a wire whose colour is not used as a rejerencr marher : reference on diagrams : \(\mathrm{Bc}, \mathrm{Bl}, \mathrm{Ve}, \mathrm{GR} . .\).
- No sleeve on a wire of "hich only the colour serves as a reference marker: reference on diagrams: F.Gr, F.Ve, F.Bc....
- Coloured stece on a wire whose . I wo dso serves as a reference marker: reference on diagrams : FN-Bl, F.Ve-Bc....
- llire without a reference marker: This is a wite whose position cannot give rise to any confusion.

IMPORTANT : The references for the parts and harnesses are arbitrary : they are selected solely to enable the diagrams to be used.
In realin the colours of the endpiecos and wires are the only references used on the wires wataing up the electrical installation of the cehirle.

\section*{2. INSTALLATION DIAGRAM.}

This illustrates the real installation of the vehicle. It indicates the lay-out of the wires and the approximate position of the parts.
The method of marking is identical to that used for the basic diagram.

\section*{3. EXAMPLE OF USE.}

Problem : The headlamps do not work with the lighting switch, but work with the headlamp flasher.

\section*{Use :}
a) Look for the headlamp references on the installation diagram and then in the list : reference :(2) and (8)
b) Read the position of the headlamps (2) and (8) in the list:
position \(=(74)\) and (73).
c) Refer to the basic diagram : mark the vertical lines (73) and (74) on which the lamps (8) and (2) are situated.
The diagram indicates that the lamps (yellow sleeves) form part of the L.H and R.H wing harnesses. These wires are connected to the relay (33) (wire with white sleeve) which is itself controlled by the lighting switch (43) (wire with yellow sleeve).
The lamps (2) and (8) can also be fed directly by the headlamp flasher from the signalling switch (45) (wire with brown sleeve, position (56)).
With the headlamp flasher working it is therefore necessary to check the relay (33), the lighting switch (43) and the different connections of the circuit, again using the installation diagram.
\(\begin{cases}\text { Key to colours } \\ \text { White } & \text { Be } \\ \text { Blue } & \text { BI } \\ \text { Grey } & \mathrm{Gr} \\ \text { Yellow } & J \\ \text { Brown } & \mathrm{Mr} \\ \text { Mouve } & \mathrm{Mr} \\ \text { Block } & \mathrm{N} \\ \text { Red } & \mathrm{R} \\ \text { Violet } & V_{i} \\ \text { Green } & \mathrm{Ve}^{2}\end{cases}\)

LIST OF PARTS

NOTE: Rel = reference number of parts on installation and basic diagrams.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref & Description and Position & Ref & Description and Position & Ref & Description and Position & Re \\
\hline 1 & Front R.H direction indicator. . 13 & 18 & Battery. 1 & 37 & Rear window heater switch & 44 \\
\hline 2 & R. H headlamp unit : Main & 19 & F.H door switch. 5 & & (eareplll .l7).i7 & \\
\hline & Beam....... . . 74 & 20 & Windscreen washer pump. 47 & 38 & Heating switch. 41 & \\
\hline & - Dip 72 & 21 & Windscreen wiper motor. 45 & 39 & Clock(ewthl) 51 & \\
\hline & - Sidelamp 58 & 22 & Hydraulie switch (DJ) 29 & & Lighting for clock 62 & \\
\hline 3 & R.H auxiliary headlamp. . . . 78 & 23 & Brake lamp switch 50 & 40 & Interior lighting switch..... 6 & \\
\hline 5 & 2nd. horn. 54 & 24 & Distributor and sparking pluys 36 & 41 & Parking lamp racker switch . 57 & 45 \\
\hline 6 & 1st. harn 55 & 25 & Engine oil pressure switch: . . 27 & 42 & Lighting for heater control & 46 \\
\hline 7 & L. H auxiliary headlamp..... 77 & 26 & Ignition coil 37 & & (ratemll) 61 & \\
\hline 8 & L. H heodlamp unit : Main & 27 & Fuse box..... \(18: 3773\) & 43 & Lighting switch 68.72.76.78 & 47 \\
\hline & Beam. 73 & 28 & Hydraulic pressure switch & 44 & Warning cluster: & 48 \\
\hline & - Dip 71 & & (III.1T). 29 & & Warning lanip for: & 48
49 \\
\hline & - Sidelamp. 56 & 29 & L.H door switch. 7 & & - R.H and L.H indicator . . 10.11 & 50 \\
\hline & Front L.H direction indicator. . 8 & 30 & Accessory terminal 48 & & - Brake pad wear 24 & \\
\hline 10 & R.H brake unit 21 & 31 & Warning cluster 10 & & - Stare of charge 22 & 51 \\
\hline 11 & Starter 3 & 33 & Headiamp relay 75 & & - Rear heated window. 16 & 52 \\
\hline 12 & Alternator 21 & 34 & Lighting rreostat. 65 & & - Sidelamps 66 & 53 \\
\hline 13 & Thermal switch for water . . 25 & 35 & Lighting for glove comportment. 48 & & Headlamps 75 & \\
\hline 14 & L.H brake unit 23 & 36 & Cigarette lighter 4 & & - Hydraulic pressure 29 & 54 \\
\hline \[
15
\] & Voltage regulator 20 & & & & - Engine oil 27 & \\
\hline 17 & Heating unit 41 & & & & - Water temperature 25 & 55
56 \\
\hline
\end{tabular}

I'nsition mo be of it: wertical line on which th part is stuated on the basic diagram.

FUSE TABLE

- Terminal for accessories
lighting for glove compartment
- Clock (except DV)
- Stop lamp switch \(\longrightarrow\) stop lamps
- Ignition switch to:
- Switch for heating heating \(-5^{\circ} \mathrm{C}\left(-41^{\circ} \mathrm{F}\right)\)
- Warning lamp cluster feed \(\rightarrow\) windscreen washer pump
- Switch for windscreen wiper and windscreen washer windscreen wiper motor
- Switch for parking lamps to :
- Front and rear parking lamps

Rheostat \(\longrightarrow\) clock lamp (rxcept DV)
- Switch for parking lamps to front and rear sidelamps
- Lighting for number plate and boot
- Lighting for heating control (except IVV)
- Lighting for ashtray (except D)
- Lighting for cigarette lighter (except IV)

BULB TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Use}} & \multirow[b]{2}{*}{Quantity} & \multirow[b]{2}{*}{Socket} & \multirow[b]{2}{*}{Type} & \multirow[b]{2}{*}{Voltage} & \multirow[b]{2}{*}{Power} & \multicolumn{2}{|c|}{Norm} \\
\hline & & & & & & & French & Internat. \\
\hline \multicolumn{2}{|l|}{Headlamps-dip and main beam} & 2 & P 45 t 41 & \begin{tabular}{l}
Yellow \\
selective
\end{tabular} & 12 V & 45: 40 W & R 136.15 & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Headlamps \\
auxiliery
\end{tabular}} & \[
\begin{gathered}
2 \\
\text { or } \\
2
\end{gathered}
\] & \[
\begin{aligned}
& P 45 \mathrm{t} 4 \mathrm{l} \\
& \text { P } 14.5 \mathrm{~s}
\end{aligned}
\] & Yellow selective H 1 iodine & \[
\begin{aligned}
& 12 \mathrm{~V} \\
& 12 \mathrm{~V}
\end{aligned}
\] & \[
45 / 40 \mathrm{~W}
\]
\[
55 \mathrm{~W}
\] & \[
\begin{aligned}
& \text { R } 136.15 \\
& \text { R } 136.16
\end{aligned}
\] & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Front indicators \\
Rear indicators \\
Stop lamps
\end{tabular}} & 6 & \multirow{2}{*}{BA 15s 19} & \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
\text { P } 25 ; 1 \\
\text { Pear-shaped }
\end{array}\right|
\]} & \multirow{2}{*}{12 V} & \multirow{2}{*}{21 W} & \multirow{2}{*}{R 136.12} & \multirow[t]{2}{*}{P 25/1} \\
\hline \multicolumn{2}{|l|}{Reversing lamps (exerpt (I)} & 2 & & & & & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Rear sidelamps \\
No plate lighting \\
Emergency lamp
\end{tabular}} & 6 & BA 15s 19 & R 19/1 & 12 V & 5 W & R 136.13 & R 19, 5 \\
\hline \multicolumn{2}{|l|}{Front sidelamps} & 2 & BA 9s & T 8/4 & 12 V & 4 W & R 136.33 & T 8/4 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Interior \\
lighting
\end{tabular}} & DJ
\(D V-D T\) & 4 & Festoon & & 12 V & 7 W & R 136.05 & \\
\hline & Pralla, & 2 & BA 15s & & 12 V & 15 W & & \\
\hline \multicolumn{2}{|l|}{Boot lighting} & 1 & Festoon & C 11 & 12 V & 5 W & R 136.14 & C 11 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Lighting (DT-(1)J) \\
- Ashtray \\
- Heating control \\
- Glove compartment \\
- Cigarette lighter \\
- Clack
\end{tabular}} & 5 & \multirow{2}{*}{BA 9s} & \multirow{2}{*}{T 8, 2} & \multirow{2}{*}{12 V} & \multirow{2}{*}{2 W} & \multirow{2}{*}{R 136.34} & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Warning cluster \\
Warning lamp for headlamps Warning lamp for sidelamps Heated rear window
\end{tabular}} & 3 & & & & & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Warning cluster \\
Other warning lamps
\end{tabular}} & 8 & \multirow[t]{2}{*}{Wedge base} & \multirow[t]{2}{*}{\(\phi 10 \mathrm{~mm}\)} & \multirow[t]{2}{*}{14 V} & \multirow[t]{2}{*}{3 W} & & \\
\hline \multicolumn{2}{|l|}{Dashboard lighting} & 2 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{l|c|c|l|l}
White & \(\mathrm{Gr}=\) Grey & \(\mathrm{Mr}=\) Brown & \(\mathrm{N}=\) Black & \(\mathrm{Ve}=\) Green \\
Blue & \(\mathrm{J}=\) Yellow & \(\mathrm{Mv}=\) Mauve & \(\mathrm{R}=\) Red & \(\mathrm{Vi}=\) Violet
\end{tabular}

FITTING THE ELECTRICAL INSTALLATION

New presentation of the "Fitting the electrical installation" operations:
Henceforth these operations will consist of two parts :
- a basic diagram and list of parts replacing the list of wires used beforehand.
- an installation diagram identical to the previous wiring diagram.

Idrantages of the basic diagram:
- It clearly indicates the circuits constituting the different functions of the installation.
- It facilitates the lacation of faults.

\section*{PRESENTATION OF THE DIAGRAMS}

\section*{1. BASIC DIAGRAM}
a) Details : The different circuits are represented in a functional way. Certain parts used in several circuits are therefore "exploded" into several parts placed on different lines.
b) References : Three kinds of references are used :
- the figures which refer to single parts (and not the wires)
- the letters AD, AG, AR \(\qquad\) which refer to the harnesses
- the other letters (\(\mathrm{Bc}, \mathrm{F} . \mathrm{Gr}, \mathrm{FN}, \mathrm{BI} .\). .) indicate the colour of the wire sleeves.

NOTE : For these last references there are 4 possible cases :
- Cibluared sleeve on a wire whose rolour is not used as a reference marher : reference on diagrams: Bc, BI, Ve, Gr
- No sleeve on a wire of which only the colour serves as a reference marker: reference on diagrams : F.Gr, F.Ve, F:Bc.. . . .
- Cioloured sleve on a wire whose colour also serves as a reference murher : reference on diagrams: FN-BI, F.Ve-Bc
- Hire "ithut " reference murker: This is a wire whose position cannot give rise to any confusion.

IMPORTANT : The references for the parts and harnesses are arbitrary : they are slected solecy to enable the diagrams to be used.
In reality the colours of the endpieces and wires are the only references ased on the wires mating up the atectrical installation of the mehicle.

\section*{2. INSTALLATION DIAGRAM.}

This illustrates the real installation of the vehicle. It indicates the lay-out of the wires and the approximate position of the parts.
The method of marking is identical to that used for the basic diagram.

\section*{3. EXAMPLE OF USE}

Problem : The headlamps do not work with the lighting switch, but work with the headlamp flasher.
a) Look for the headiamp references on the installation diagram and on the list.'
reference : (2) and (8)
b) Read the position of the headlamps (2) and (8) in the list : position \(=(74)\) and (73).
c) Refer to the basic diagram : mark the vertical lines (73) and (74) on which the lamps (8) and (2) are situated.
The diagram indicates that the lamps (yellow sleeves) form part of the L.H. and R.H. wing harnesses. These wires are connected to the relay (33) (wire with white sleeve) which is itself controlled by the lightıng switch (43) (wire with yellow sleeve).
The lamps (2) and (8) can also be fed directly by the headlamp washer from the signalling switch (45) (wire with brown sleeve, position (56).
With the headlamp flasher working it is therefore necessary to check the relay (33), the lighting switch (43) and the different connections of the circuit, again using the installation diagram.
\begin{tabular}{|ll|}
\hline Key to colours \\
White & Br \\
Blue & BI \\
Grey & Gr \\
Yellow & J \\
Brown & Mr \\
Mauve & Mr \\
Black & N \\
Red & R \\
Violet & \(\mathrm{Vi}^{\text {Green }}\) \\
Ge \\
\hline
\end{tabular}

LIST OF PARTS

NOTE : ReJ. = reterence number of parts on installation diagrams.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ref. & Description and Position & Ref. & Description and Position & Ref. & Description and Position & Ref. & \\
\hline 1 & Front R.H. direction indicator. 13 & 17 & Heating unit 41 & 36 & Cigarette lighter 4 & 44 & Cl \\
\hline 2 & R.H. headlamp unit : Main & 18 & Battery 1 & 37 & Rear window heater & & \\
\hline & beam. 74 & 19 & R.H. door switch 5 & & switch (except DV, DT) ... 17 & & F \\
\hline & - Dip 72 & 20 & Windscreen washer pump . . . 47 & 38 & Heating switch. 41 & & [\\
\hline & - Sidelamp. 58 & 21 & Windscreen wiper motor . . . 45 & 39 & Clock. 51 & & - \\
\hline 3 & R.H. auxiliary headlamp . . . 78 & 23 & Brake lamp swirch 50 & & Lighting for clock. 62 & & - \\
\hline 5 & 2nd. Horn. 54 & 24 & Distributor and sparking & 40 & Interior lighting switch. . . . 6 & & - \\
\hline 6 & 1st. Horn. 55 & & plugs 36 & 41 & Parking lamp rocker switch. 57 & 45 & Li \\
\hline 7 & L.H. auxiliary headlamp. . . . 77 & 25 & Engine oil pressure switch . . . 27 & 42 & Lighting for heater control. 61 & 45
46 & Li \\
\hline 8 & L.H. headlomp unit : Main & 26 & Ignition coil. 37 & 43 & Lighting switch . . 68.72.76.78 & 4 & Wi
sw \\
\hline & beam 73 & 27 & Fuse box. 18.28.57.63 & 44 & Warning cluster: & 47 & Sw \\
\hline & \begin{tabular}{l}
- Dip \\
- Sidelamp \\
\hline 1
\end{tabular} & 28 & Hydraulic pressure switch & & Warning lamp for : & 48 & An
R. \\
\hline 9 & \begin{tabular}{|c|cr}
- Sidelamp......... & 56 \\
Front, L. L . direction indicator 88
\end{tabular} & 29 & (DV.DT) 29
L.H. door switch. 7 & & - R.H. and L.H. indicotor 10.11 & 49 & R \\
\hline 10 & R.H. brake unit. 21 & 30 & Accessory terminal 48 & & - Brake pad wear 24 & 50 & Re \\
\hline 11 & Starter 3 & 31 & Accessory
Warning cluster. 10 & & - Rear heated window. 16 & 51 & L. \\
\hline 12 & Alternotor 21 & 32 & Starter motor switch. 3 & & - Sidelamps 66 & 52 & Bo \\
\hline 13 & Thermal switch far woter . . . 25 & 33 & Headlamp relay. 75 & & - Headlamps. 75 & 53 & Re \\
\hline 14 & L.H. brake unit. 23 & 34 & Lighting rheostat 65 & & - Hydraulic pressure 29 & 54 & Re \\
\hline 15 & Voltage regulator 20 & 35 & & & - Engine oil. 27 & \[
55
\] & Re \\
\hline 16 & Starter relay. 2 & & compartment 48 & & - Water temperature. 25 & & Re \\
\hline
\end{tabular}

I'wilian number of the vertical line on which the part is situated on the basic diagram.

FUSE TABLE
- Terminal for accessories \(\longrightarrow\) lightıng for glove compartment
- Clock
- Stop lamp switch \(\longrightarrow\) stop lamps
- Ignition switch to
-Switch for heating \(\longrightarrow\) heating \(-5^{\circ} \mathrm{C}\left(-41^{\circ} \mathrm{F}\right)\)
- Warning lamp cluster feed \(\quad \longrightarrow\) windscreen washer pump
- Switch for windscreen wiper and windscreen washer \(\square\) windscreen wiper motor
= Switch for parking lamps to:
- Front and rear parking lamps
- Rheostat \(\quad\) bulbs lighting dashboard
- Switch for parking lamps to front and rear sidelamps
- Lighting for number plate and boot
- Lighting for heating control
- Lighting for ashtray
- Lighting for cigarette lighter

BULB TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow{2}{*}{Use}} & \multirow{2}{*}{Quantity} & \multirow{2}{*}{Socket} & \multirow{2}{*}{Type} & \multirow{2}{*}{Voltage} & \multirow{2}{*}{Power} & \multicolumn{2}{|c|}{Norm} \\
\hline & & & & & & & French & Internat \\
\hline \multicolumn{2}{|l|}{Headlamps - Dip and main beam} & 2 & P 45141 & \begin{tabular}{l}
Yellow \\
Selective
\end{tabular} & 12 V & 45.40 W & R. 136.15 & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Headlamps auxiliary}} & 2 & P 45 t 41 & \begin{tabular}{l}
Yellow \\
Selective
\end{tabular} & 12 V & 45 40 W & R. 136.15 & \\
\hline & & \(\stackrel{\text { or }}{2}\) & P 14.5 s & H l iodine & 12 V & 55 W & R. 136.16 & \\
\hline \multicolumn{2}{|l|}{Front indicators Rear indicators Stop lamps} & 6 & \multirow[t]{2}{*}{BA 15s 19} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { P } 25 / 1 \\
\text { Pear- } \\
\text { shaped }
\end{gathered}
\]} & \multirow[t]{2}{*}{12 V} & \multirow[t]{2}{*}{21 W} & \multirow[t]{2}{*}{R. 136.12} & \multirow[t]{2}{*}{P 25/1} \\
\hline \multicolumn{2}{|l|}{Reversing lamps} & 2 & & & & & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Rear sidelamps \\
No plate lightıng \\
Emergency lamp
\end{tabular}} & 6 & BA 15s 19 & R 19:5 & 12 V & 5 W & R. 136.13 & R 19/5 \\
\hline \multicolumn{2}{|l|}{Front sidelamps} & 2 & BA 9s & T 8/4 & 12 V & 4 W & R. 136.33 & T 8/4 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Interior \\
lighting
\end{tabular}} & DX - DY & 4 & Festoon & & 12 V & 7 W & R. 136.05 & \\
\hline & Palla & 2 & BA 15 s & & 12 V & 15 W & & \\
\hline \multicolumn{2}{|l|}{Boot lighting} & 1 & Festoon & C 11 & 12 V & 5 W & R. 136.14 & C 11 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
likhting: \\
- Ashtray \\
- Heating control \\
- Glove compartment \\
- Cigarette lighter \\
- Clock
\end{tabular}} & 5 & \multirow{2}{*}{BA 9s} & \multirow{2}{*}{T 8/2} & \multirow{2}{*}{12 V} & \multirow{2}{*}{2 W} & \multirow{2}{*}{R. 136.34} & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Harming rlustor: \\
Warning lamp for headlamps Warning lamp for sidelamps Heated rear window
\end{tabular}} & 3 & & & & & & \\
\hline & & 8 & \multirow{2}{*}{Wedge Base} & \multirow{2}{*}{¢ 10 mm} & \multirow{2}{*}{14 V} & \multirow{2}{*}{3 W} & & \\
\hline \multicolumn{2}{|l|}{Dashboard lighting} & 2 & & & & & & \\
\hline \multicolumn{2}{|l|}{Lighting for gear selector on Dbw} & 1 & \multicolumn{2}{|c|}{Incorporated in the lamp} & 24 V & 5 W & & \\
\hline
\end{tabular}

\begin{tabular}{lll}
Brown & N Black & Ve Green \\
Mauve & \(\mathrm{R}-\) Red & Vi Violet
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Homess & \begin{tabular}{l}
nite \\
\(\mathrm{N}^{\mathrm{o}}\)
\end{tabular} & Colour of enc: or self-adhesive number & Wiring schedule \\
\hline Electronic control unit & 1 & \[
1
\] & Electronic control unit (18) (terminal 1) to air temperature sensor (21) \\
\hline -do- & 2 & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & Electronic contral unit (18) (terminal 2) to full load switch (16) \\
\hline -do- & 3 & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & Electronic control unit (18) (terminal 3) to 12 -way union (20) \\
\hline -do- & 4 & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & Electronic control unit (18) (terminal 4) to 12 -way union (20) \\
\hline -do- & 5 & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & Electronic control unit (18) (terminal 5) to 12 -way union (20) \\
\hline -do- & 6 & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] & Electronic control unit (18) (terminal 6) to 12 -way union (20) \\
\hline -do- & 7 & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & Electronic contral unit (18) (terminal 7) to pressure sensor (17) (terminal 7) \\
\hline -do- & 8 & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & Electronic control unit (18) (terminal B) to pressure sensor (17) (terminal 8) \\
\hline -do- & 9 & \[
\begin{aligned}
& 9 \\
& 9
\end{aligned}
\] & Electronic control unit (18) (terminal 9) to throttle spindle switch (10) \\
\hline -do- & 10 & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & Electronic control unit (18) (terminal 10) to pressure sensor (17) (terminal 10) \\
\hline -do- & 11 & \begin{tabular}{l}
11 \\
11 \\
yellaw
\end{tabular} & \begin{tabular}{l}
Electronic control unit (18) (terminal 11) earth to 12 -way union (20) \\
to air temperature sensor (21) \\
to full land switch (16) \\
to general feed relay (3) (terminal 85)
\end{tabular} \\
\hline -do- & 12 & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & Electronic control unit (18) (terminal 12) to 12 -way union (20) \\
\hline do- & 14 & \[
\begin{aligned}
& 14 \\
& 14
\end{aligned}
\] & Electronic control unit (18) (terminal 14) to throttle spindle switch (10) \\
\hline -do- & 15 & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & Electronic control unit (18) (terminal 15) to pressure sensor (17) (terminal 15) \\
\hline -do- & 16 & \begin{tabular}{l}
16 \\
white \\
mauve
\end{tabular} & Electronic control unit (18) (terninal 16) to general feed relay (3) (terminal 87) to pump relay (4) (terminal 86) to junction on lead 24 \\
\hline -do- & 17 & \[
\begin{aligned}
& 17 \\
& 17
\end{aligned}
\] & Electronic control unit (18) (terminal 17) to throttle spindle switch (10) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Harness & Wire \(\mathrm{N}^{\circ}\) & Colour of ends or self-adhesive number & Wiring schedule \\
\hline Electronic control unit & 18 & \[
\begin{gathered}
18 \\
18 \\
\text { White }
\end{gathered}
\] & Electronic control unit (18) (terminal 18) to cold start injector (9) to impulse relay (5) (terminal 87) to 12 -way union (20) lead 13 \\
\hline - do - & 19 & \[
\begin{gathered}
19 \\
\text { Yellow }
\end{gathered}
\] & Electronic control unit (18) (terminal 19) to pump relay (4) (terminal 85) \\
\hline - do - & 20 & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & Electronic control unit (18) (terminal 20) to throttle spindle switch (10) \\
\hline - do - & 21 & \[
\begin{aligned}
& 21 \\
& 21
\end{aligned}
\] & Electronic control unit (18) (terminal 21) to 12 way union (20) \\
\hline - do - & 22 & \[
\begin{aligned}
& 22 \\
& 22
\end{aligned}
\] & Electronic control unit (18) (terminal 22) to 12-way union (20) \\
\hline -do - & 23 & \[
\begin{aligned}
& 23 \\
& 23
\end{aligned}
\] & Electronic control unit (18) (terminal 23) to 12 -way union (20) \\
\hline -do- & 25 & \begin{tabular}{l}
Black \\
Black \\
Black \\
Black \\
Yellow
\end{tabular} & \begin{tabular}{l}
Starter motor control relay (8) (+ ve battery) to general feed relay (3) (terminat \(30 / 51\)) \\
to pump relay (4) (terminal \(30 / 51\)) to impulse relay (5) (terminal \(30 / 51\)) to impulse relay (5) (terminal 85)
\end{tabular} \\
\hline -do- & 26 & Mauve Mauve & Ignition coil (15) (+ve terminal) (ignition switch \(A\) of vehicle) to general feed relay (3) (terminal 86) \\
\hline -do- & 27 & \begin{tabular}{l}
White \\
White
\end{tabular} & Pump relay (4) (terminal 87) to fuel pump feed wire (19) \\
\hline -do- & 28 & \begin{tabular}{l}
Mauve \\
Red \\
Red
\end{tabular} & \begin{tabular}{l}
Impulse relay (5) (terminal 86) \\
to starter motor control relay (8) \\
to vehicle front cables (starter motor switch B)
\end{tabular} \\
\hline & 35 & & \begin{tabular}{l}
12-way union (20) \\
to cold start injector (9)
\end{tabular} \\
\hline Flying lead & 29 & & Fuel pump (19) to earth on R.H. sidemember \\
\hline Engine do & 3 & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & 12 way union (20) to injector (11) cylinder 1 \\
\hline -do- & 4 & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & 12-way union (20) to injector (13) cylinder 3 \\
\hline -do- & 5 & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & 12-way union (20) to injector (12) cylinder 2 \\
\hline -do- & 6 & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& \text { 12-way union (20) } \\
& \text { to injector (14) cylinder } 4
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Part schedule}
1. Iqnition distributor and triggering contacts
2. Battery •
3. General feed relay
4. Pump relay
5. Impulse relay
6. Thermal sensor
7. Cold start time delay thermal switch
8. Starter motor control switch
9. Cold start injector
10. Throttle spindle switch
11. Injector cylinder 1
12. Injector cylinder 2
13. Injector cylinder 3
14. Injector cylinder 4
15. Ignition coil
16. Full load switch
17. Pressure sensor
18. Electronic control unit
19. Fuel pump
20. 12-way union
21. Air temperature sensor
4. Vehicle ignition switch
B. Starter motor switch

\title{
ARRANGEMENT OF THE ELECTRICAL INSTALLATION \\ OF THE ELECTRONIC FUEL INJECTION SYSTEM
}
(I ehicles DI.IE produced since lpril 19:1)
NOTE: For the arrangement of the general
electrical installation : see operation DX. 510-00 f

\section*{DIAGRAM SHOWING PRINCIPLES OF STARTER MOTOR CONTROL}

KEY:
NOTE : The markings on the components are identical to those used in the wiring diagrams
- 2: Battery
- 3 : General feed relay
- 4 : Fuel pump relay
- 5 : Impulse relay
- 7 : Time delay thermal switch (cold start)
- 8 : Starter motor control relay
- 9 : Cold start injector
- 15 : Ignition coil
- 18 : Electronic control unit
- 19 : Fuel pump
- A : Vehicle ignition switch
- B : Starter motor switch
- C : Charge warning light
- D : Relay for voltage requilator relay
- E : Starter motor
\begin{tabular}{|c|c|c|c|}
\hline Harness & \(N^{\circ}\) of wire & Colour of ends or self adhesive number & Schedule of wires \\
\hline \multirow[t]{7}{*}{Engine} & 11 & 11 & \begin{tabular}{l}
12-way union (20) \\
to injector (11), cylinder 1 \\
to injector (12), cylinder 2 \\
to injector (13). cylinder 3 \\
to injector (14), cylinder 4 \\
to thermal sensor (6) \\
to earth (on relay voltage requiator)
\end{tabular} \\
\hline & 12 & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \begin{tabular}{l}
12-way union (20) \\
to ignition distributor and triggering contacts (1)
\end{tabular} \\
\hline & 18 & \begin{tabular}{l}
\[
13
\] \\
Blue
\end{tabular} & 12-way union (20) to time delay thermal switch (cold start) (7) \\
\hline & 21 & \[
\begin{aligned}
& 21 \\
& 21
\end{aligned}
\] & \begin{tabular}{l}
12-way union (20) \\
to ignition distributor and triggering contacts (1)
\end{tabular} \\
\hline & 22 & \[
\begin{aligned}
& 22 \\
& 22
\end{aligned}
\] & 12-way union (20) to ignition distributor and triggering contacts (1) \\
\hline & 23 & \[
\begin{aligned}
& 23 \\
& 23
\end{aligned}
\] & 12-way union (20) to thermal sensor (6) \\
\hline & 35 & Grey Grey & 12-way union (20) to time delay thermal switch (7) (cold start) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Harness & No. of wire & Colour of ends or self adhesive number & Schedule of wires \\
\hline Electronic control unit & 18 & \begin{tabular}{l}
18 \\
18 \\
white \\
red \\
red
\end{tabular} & \begin{tabular}{l}
Electronic control unit (18) (terminal 18) \\
to cold start injector \\
to shunt with mauve wire \\
to 12 -way union (20) wire 13 \\
to front wiring harness of vehicle (starter motor switch 3) to flying feed lead for starter motor solenoid
\end{tabular} \\
\hline - do - & 19 & \[
\begin{gathered}
19 \\
\text { yellow }
\end{gathered}
\] & Electronic control unit (18) (terminal 19) to pump relay (4) (terminal 85) \\
\hline - do - & 20 & 20 & Electronic control unit (18) (terminal 20) to throttle spindle switch (10) \\
\hline - do - & 21 & \[
\begin{aligned}
& 21 \\
& 21
\end{aligned}
\] & Electronic control unit (18) (terininal 21) to 12 -way union (20) \\
\hline - do - & 22 & 22 & Electronic control unit (18) (terminal 22) to 12 -way union (20) \\
\hline - do - & 23 & \[
\begin{aligned}
& 23 \\
& ? 3
\end{aligned}
\] & Electronic control unit (18) (terminal 23i to 12 -way union \\
\hline - do - & 25 & \begin{tabular}{l}
black \\
black \\
black \\
black \\
yellow
\end{tabular} & Starter motor control relay (+ batterv) to genera' feed relay (3) (terminal 30/51) to pump retay (4) (terminal 30 /51) insulated at level of relays insulated at level of relays \\
\hline - do- & 26 & mauve mauve & Ignition coil (15) (+ terminal) (ianition switch \(\bar{A}\) of vehicle) to general feed relay (terminal 86) \\
\hline - do - & 27 & white white & Pump relay (4) (terminal 87) to fuel pump feed wire (19) \\
\hline - do - & 35 & & \begin{tabular}{l}
12-way union (20) \\
to cold start injector (9)
\end{tabular} \\
\hline Flying lead & 29 & & \begin{tabular}{l}
Fuel pump (19) \\
to earth on R.H side member
\end{tabular} \\
\hline Engine & 3 & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & 12-way union (20) to injector (11) cylinder 1 \\
\hline - do - & 4 & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & 12-way union (20) to injector (13), cylinder 3 \\
\hline - do - & 5 & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & 12-way union (20) to injector (12), cylinder 2 \\
\hline -do - & 6 & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] & 12-way union (20) to injector (14) cylinder 4 \\
\hline
\end{tabular}

\section*{ARRANGEMENT OF THE ELECTRICAL INSTALLATION OF THE ELECTRONIC FUEL INJECTION SYSTEM}

NOTE : For the arrangement of the general electrical installation: see Op Dm 510-00
for vehicles \(: \longrightarrow 471 \longrightarrow 1971\) or Op. Dm. 510.00 a
for vehicles: \(\longmapsto 9\) 91

\section*{DIAGRAM SHOWING THE PRIMCIPLES OF THE STARTER MOTOR CONTROL}

The starter motor and impulse relays are no longer fitted

KEY :

NOTE : The markings of the components are identical to those used in the wiring diagram.
- 2: Battery
- 3 : General feed relay
- 4: Fuel pump relay
- 7: Time delay thermal switch (cold start)
- 9 : Cold stast injector
- 15 : Ignition coil
- 18 : Electronic control unit
- 19 : Fuel pump
- A : Ignition switch of vehicle
- B : Starter motor switch
- C : Charging warning light
- D : Relay voltage regulator
- E : Starter motor

INSTALLATION DIAGRAM

The electrical installation for the cooling system consists of three extra harnesses.
The general electrical installation of the vehicle is identical to the standard installation of the corresponding type (minnat gearchange or hydraulic gearchange vehicles).

\section*{REFERENCE NUMBERS FOR THE PARTS.}

The references for those parts common to the general installation are identical to those used in the installation diagram of the corresponding vehicle type (manual or hydraulic nearchange vehicles).

\section*{18. Battery}
26. Iqnition coil
47. Ignition switch
70. R.H. condensor fan motor
71. L.H. condensor fan motor
72. Ean relay
73. Main relay
74. Main cut-out
75. Electromagnetic cut in for compressor
76. Cut-out on console
77. Fan motor on console
78. Thermostat for surrounding air
79. General switch and rheostat for fan on console (77)

\section*{OPERATION.}

The cooling will only operate when the engine is running : the main relay (73) is only controlled when the ignition switch (47) is closed, additionally the compressor must be driven by the engine.

The cooling system is operated by the rheostat switch (79)
This has 4 positions :
lst. position: completely non-operational.
- 2nd. position : - console fan feed (77) lst. speed,
- feed for fans (70) and (71) using relay (72)
- feed for cut-in (75) control circuit
- 3rd. and 4th. position: 2nd or 3rd. speed of console air fan (77) which makes it possible to adjust the cool air output.

The surrounding air thermostat (78) makes it possible to adjust the temperature of the cool air. As soon as this temperature is reached the thermostat cuts off the electromagnetic cut-in (75) feed and the compressor stops.
The main cut-out (74) (30 amps) protects the installation assembly. It is fitted on the battery frame.

The cut-out (76) (15 amps) protects the console block and the compressor cut-in. This cut-out is placed under the lining of the engine recess near the console.

NOTE : Keep this page open whilst reading the operation
P.T.O.

\section*{PART SCHEDULE}
1. Ignition distributor and triggering contacts
2. Battery
3. General feed relay
4. Pump relay
5. Impulse relay
6. Thermal sensor
7. Cold start time delay thermal switch
8. Starter motor control relay.
9. Cold start injector
10. Throttle-spindle switch
11. Injector \(N^{\circ} 1\) cylinder
12. Injector \(\mathrm{N}^{\circ} 2\) cylinder
13. injector \(N^{\circ} 3\) cylinder
14. Injector \(\mathrm{N}^{\circ} 4\) cylinder
15. Ignition coil
16. Full-load switch
17. Pressure sensor
18. Electronic control unit
19. Fuel pump
20. 12 -way union
21. Air temperature sensor
A. Vehicle ignition switch
B. Starter motor switch

\section*{I.- CHARACTERISTICS}

\section*{vehicles all types}

\section*{1-Batteries}

Battery 200/40 A.H. : Vehicles all types \(\rightarrow\) Oct. 1966
1 rhicles all types without QI headlamps and without heating - \(20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)\)
\(\longmapsto\) Oct. \(1966 \rightarrow\) Sept. 1967
Vehicles all types \(\longmapsto\) Sept. 1967
-- Battery 55 A.H.: : Pallas vehicles plus all types fitted with QI. headlamps and heating - \(20^{\circ} \mathrm{C}\) (\(68^{\circ} \mathrm{F}\)) \(\longmapsto\) Oct. \(1966 \rightarrow\) Sept. 1967
- Battery 250/50 A.H.: Vehicles all types (except DV) fitted with air conditoner
2.- Dynamos
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Type of vehicle } & \begin{tabular}{c}
Vehicles without QI head- \\
lamps and without heating \\
\(20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)\)
\end{tabular} & Vehicles alI types & \begin{tabular}{c}
Vehicles with QI headlamps \\
or heating \(-20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)\) \\
Pallas vehicles
\end{tabular} \\
\hline Period of use & \(\longmapsto 10 / 66 \rightarrow-19 / 67\) & \(\longmapsto 1 / 66 \rightarrow 5 / 66\) & \(\longmapsto 5 / 66 \rightarrow 9 / 67\) \\
\hline DUCELLIER dynamo & 7327 A & 7336 A & 7336 \\
\hline PARIS-RHONE dynamo & G. \(10 \mathrm{C}-39\) & G. \(10 \mathrm{C}-44\) & G. \(10 \mathrm{C}-48\) \\
\hline \begin{tabular}{l}
External diameter of \\
pulley
\end{tabular} & & 68.5 mm & \begin{tabular}{l}
60 mm DUCELLIER \\
60.7 mm PARIS-RHONE \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{3. Alternators}

Vehicles 4.7. \(\rightarrow\) 3/1971: PARIS-RHONE A 13 R 52, or DUCELLIER 7530 A and 7530 B
- Vehicles 4.T. \(\longmapsto\) 3/1971: PARIS-RHONE A 13 R 109 and A 13 R 110, or DUCELLIER 7551 A and 7551 B
- Vehicles A.T. (except DV) fitted with air-conditioner: PARIS-RHONE A 13 R 119, or DUCELLIER 7558 A
-Vehicles A.T. \(\longmapsto 5\) 1973: PARIS-RHONE A 13 R 119, or DUCELLIER 7558 A.

\section*{4. Voltage regulators}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Brand name of regulator \\
and dynamo
\end{tabular}} & \multicolumn{2}{|c|}{ DUCELLIER } & \multicolumn{2}{c|}{ PARIS-RHONE } \\
\hline Type of dynamo & 7327 A & 7336 A & \(\mathrm{G} 10 \mathrm{G}-39\) & \begin{tabular}{c}
\(\mathrm{G} 10 \mathrm{C}-46\) \\
or G \(10 \mathrm{C}-48\)
\end{tabular} \\
\hline \begin{tabular}{l}
Type of corresponding \\
regulator
\end{tabular} & 8243 F & 8346 A & YT 2113 & YT 2116 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \begin{tabular}{c}
Brand name of regulator and \\
alternator
\end{tabular} & DUCELLIER & PARIS-RHONE \\
\hline \begin{tabular}{l}
Type of alternator
\end{tabular} & \begin{tabular}{c}
\(7530 \mathrm{~A}-7530 \mathrm{~B}-7558 \mathrm{~B}\) \\
\(7551 \mathrm{~A}-7551 \mathrm{~B}\)
\end{tabular} & \begin{tabular}{c}
A 13 R 52 - A 13 R 109
\end{tabular} \\
\hline \begin{tabular}{l}
Type of corresponding \\
regulator
\end{tabular} & 8360 A & AYD 212 \\
\hline
\end{tabular}

\section*{5. Starter motars}
- Vehicles DX-D)I-DAFF-DJF.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Periode of use } & \multicolumn{4}{l|}{\(12 / 1957\)} \\
\hline Brand name of starter motor & DUCELLIER & PARIS-RHONE & DUCELLIER & PARIS-RHONE \\
\hline Type of starter motor & \(6164 \AA\) & D 11 B 116 & 6182 A & D 11.E 123 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Period of use & \(⺊\) 9/1969 - 3/1972 & \(\longmapsto 3: 1972\) \\
\hline Brand name of starter motor & PARIS-RHONE & DUCELLIER \\
\hline Type of starter motor & D 10 E \(52(\mathrm{D}\) W) and D \(10 \mathrm{E} 55(\mathrm{DJ})\) & 6200 A (D)) and 6225 A (O) \\
\hline
\end{tabular}
- Vehicles all types (except DX-DJ-DXF-DJF)
\begin{tabular}{|c|c|c|c|c|}
\hline Period of use & \multicolumn{2}{|c|}{\(\rightarrow 1968\)} & \(\rightarrow 9 / 68 \rightarrow 19 / 69\) & \(\longmapsto-9 / 1969\) \\
\hline Brand name of starter motor & DUCELLIER & PARIS-RHONE & PARIS-RHONE & DUCELLIER \\
\hline Type of starter motor & 6166 A & D 10 B 45 & D 10E 49 & \begin{tabular}{l}
\(6201 \mathrm{~A}(\mathrm{DY})\) \\
\(6215 A(D V, D T)\)
\end{tabular} \\
\hline
\end{tabular}

\section*{II-RE-SKIMMING}

1-Dynamos:
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Brand name of dynamo } & \multicolumn{2}{|c|}{ DUCELLIER } & \multicolumn{2}{|c|}{ PARIS-RHONE } \\
\hline Type of dynamo & 7327 A & 7336 A & G 10 C 39 & \begin{tabular}{c}
G 10 C 44 \\
or G 10 C 48
\end{tabular} \\
\hline \begin{tabular}{l}
Minimum diameter after \\
skimming of commutator
\end{tabular} & 35 mm & 36 mm & \(34,5 \mathrm{~mm}\) & \(34,5 \mathrm{~mm}\) \\
\hline
\end{tabular}

\section*{2. Starter motors :}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Brand name of starter motor } & \multicolumn{2}{|c|}{ DUCELLIER } & \multicolumn{2}{|c|}{ PARIS-RHONE } \\
\hline Type of starter motor & \begin{tabular}{c}
\(6164 \mathrm{~A}-6166 \mathrm{~A}\) \\
\(6182 \mathrm{~A}-6200 \mathrm{~A}\) \\
6225 A
\end{tabular} & \begin{tabular}{c}
6201 A \\
6215 A
\end{tabular} & \begin{tabular}{l}
D 10 B 45 \\
D 11 B 116 \\
D 11 E 123
\end{tabular} & D 10E 49 & D 10 E 52 55 \\
\hline \begin{tabular}{l}
Minimum diameter after \\
skimming of commutator
\end{tabular} & \(39,5 \mathrm{~mm}\) & 31 mm & 43 mm & 39.5 mm & 40 mm \\
\hline
\end{tabular}

\section*{III - TESTS ON A TEST BENCH OR ON THE VEHICLE}

\section*{1. Dynamos}

Dynamo without requlator : yellow wire "EXC" joined to red wire "DYN» and black wire to earth.
\begin{tabular}{|l|c|c|c|}
\hline Brand name and type of dynamo & \begin{tabular}{c}
DUCELLIER 7327 A or \\
PARIS-RHONE G 10 C 39
\end{tabular} & \begin{tabular}{c}
DUCELLIER \\
7336 A
\end{tabular} & \begin{tabular}{c}
PARIS-RHONE \\
G 10 C 44 or \\
G 10 C 48
\end{tabular} \\
\hline Cold starting speed at 13 V & 1200 rpm & 1950 rpm & 1700 rpm \\
\hline Output when cold at 13 V & \begin{tabular}{c}
\(3,5 \mathrm{~A}\) to 1500 rpm \\
22 A to 2500 rpm
\end{tabular} & \begin{tabular}{c}
11 A to 2200 rpm \\
29 A to 3000 rpm
\end{tabular} & \begin{tabular}{r}
19.5 A to 2200 rpm \\
33 A to 3000 rpm
\end{tabular} \\
\hline
\end{tabular}

\section*{2. Alternators:}
a) First case :
- lihirles A.T. \(\rightarrow 3 / 1971\) : PARIS-RHONE A 13 R 52, or DUCELLIER 7530 A and 7530 B
- Vehicles A.T. \(\longmapsto 3 / 1971\) : PARIS-RHONE A 13 R 109 and A 13 R 110, or DUCELLIER 7551 A and 7551 -
- Ratio of alternator/ engine rotation speed :
\[
\rightarrow 3 / 1971=1.53 / 1
\]
\[
\longmapsto 3 ; 1971=1.75 / 1
\]
- Trials on test-bench without requlator : join terminal "EXC" to "+" terminal.
- Output when cold at 14 V : 16 A 1650 r.p.m. and 35 A at 3600 r.p.m. alternator.
b) Second case :
- V'ehicles all types (except DV) with air conditioner and vehicles all types \(\longmapsto\) 5/1972
- PARIS-RHONE A 13 R 119 or DUCELLIER 7558 A
- Ratio of alternator/ engine rotation speed \(=1.75 / 1\)
- Trials on test bench without regulator-join terminal "EXC» to "+ \(n\) terminal
- Output when cold at \(14 \mathrm{~V}: 17.5 \mathrm{~A}\) at 1750 r.p.m. and 43 A at \(3900 \mathrm{r} . \mathrm{p} . \mathrm{m}\). alternator.

\section*{3. Démarreurs :}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Brand name of starter motor & \multicolumn{5}{|c|}{DUCELLIER} \\
\hline Types of starter motor & 6164 A & 6166 A & 6182 A & 6201 A 6215 A & \[
\begin{aligned}
& 6200 \mathrm{~A} \\
& 6225 \mathrm{~A}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Testing on the vehicle \\
a) Battery charged, intensity absorbed pinion blocked. \(\qquad\) \\
b) Starting current. \(\qquad\) \\
c) Starter motor removed, current running light.
\end{tabular} & \begin{tabular}{l}
600 A \\
190 to 210 A \\
50 to \\
85 A
\end{tabular} & \begin{tabular}{l}
420 A \\
150 to 170 A \\
30 to 50 A
\end{tabular} & \begin{tabular}{l}
600 A \\
190 to \\
210 A \\
50 to 85 A
\end{tabular} & \begin{tabular}{l}
410 A \\
150 to \\
170 A \\
\(35 \AA\)
\end{tabular} & \begin{tabular}{l}
520 A 180 to 200 A \\
50 to 60 A
\end{tabular} \\
\hline \begin{tabular}{l}
Testing on test bench \\
a) Maximum power. \(\qquad\)
\end{tabular} & 2 HP & 1,35 HP & 2 HP & 1,25 HP & 1,48 HP \\
\hline - Torque corresponding to this power. & \[
\begin{gathered}
10 \mathrm{~m} \mathrm{IN} \\
7.2 \mathrm{ft} \mathrm{Ibs} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 6.25 \mathrm{~m} \backslash \mathrm{~N} \\
& 4.5 \mathrm{ft} \mathrm{Ibs}
\end{aligned}
\] & \[
\begin{gathered}
10 \mathrm{~m} \ln \\
7.2 \mathrm{ft} \mathrm{Ibs}
\end{gathered}
\] & \[
\begin{array}{r}
4.5 \mathrm{miN} \\
3.3 \mathrm{ft} \mathrm{Ibs} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9.8 \mathrm{~m} \Lambda \mathrm{~N} \\
& 7 \mathrm{ft} \mathrm{Ibs} \\
& \hline
\end{aligned}
\] \\
\hline - Intensity absorbed by this torque & 340 A & 245 A & 340 A & 190 A & 300 A \\
\hline b) Average torque at 1000 r.p.m. . & \[
\begin{aligned}
& 13.5 \mathrm{~m} / \mathrm{N} \\
& 9.8 \mathrm{ft} \mathrm{lbs}
\end{aligned}
\] & \[
\begin{gathered}
8.5 \mathrm{mAN} \\
6.2 \mathrm{ft} \mathrm{Ibs}
\end{gathered}
\] & \[
\begin{aligned}
& 13.5 \mathrm{mAN} \\
& 9.8 \mathrm{ft} \mathrm{Ibs}
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \mathrm{~m} / \mathrm{N} \\
& 5.4 \mathrm{ft} \mathrm{Ibs}
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \mathrm{mAN} \\
& 7.6 \mathrm{ft} \mathrm{Ibs}
\end{aligned}
\] \\
\hline - Intensity absorbed by this torque & 410 A & 285 A & 410 A & 290 A & 310 A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Brand name of starter motor & \multicolumn{5}{|c|}{FARIS-RHONE} \\
\hline Types of starter motor & D 10 B 45 & D 11 B 116 & D 11 E 123 & D 10 E 49 & \[
\begin{aligned}
& \text { D } 10 \text { E } 52 \\
& \text { D } 10 \text { E } 55
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Testing on the vehicle \\
a) Battery charged, intensity absorber pinion blocked. \\
b) Stating current \\
c) Starting motor removed, current running light
\end{tabular}} & 470 A & 630 A & 630 A & 470 A & 425 A \\
\hline & \[
\begin{aligned}
& 150 \text { to } \\
& 170 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 190 \text { to } \\
& 210 \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& 190 \text { to } \\
& 210 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 150 \mathrm{t} \\
& 170 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 190 \text { to } \\
& 210 \mathrm{~A}
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& 30 \text { to } \\
& 50 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 50 \text { to } \\
& 70 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 50 \text { to } \\
& 70 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 30 \mathrm{to} \\
& 50 \mathrm{~A}
\end{aligned}
\] & 40 A \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Testing on test bench \\
a) Maximum power. \(\qquad\) \\
a) Maximum power. \(\qquad\) \\
- Torque corresponding to this power. . . . \\
Intensity absorbed by this torque \\
b) Average torque at 1000 r.p.m. \\
Intensity absorbed by this torque
\end{tabular}} & 1,4 HP & 2,2 HP & 2,2 HP & 1,4 HP & 1,55 HP \\
\hline & \[
\begin{gathered}
8 \mathrm{~m} \mathrm{IN} \\
5.8 \mathrm{ft} \mathrm{Ibs}
\end{gathered}
\] & \[
\begin{aligned}
& 8 \mathrm{~m} \mathrm{IN} \\
& 5.8 \mathrm{ft} \mathrm{Ibs}
\end{aligned}
\] & \[
\begin{gathered}
8 \mathrm{~m} \cdot \mathrm{~N} \\
5.8 \mathrm{ft} \mathrm{Ibs}
\end{gathered}
\] & \[
\begin{gathered}
8 \mathrm{mlN} \\
5.8 \mathrm{ft} \mathrm{Ibs}
\end{gathered}
\] & \[
\begin{gathered}
7 \mathrm{~m} \backslash \mathrm{~N} \\
5 \mathrm{ft} \mathrm{Ibs}
\end{gathered}
\] \\
\hline & 220 A & 250 A & 250 A & 220 A & 200 A \\
\hline & \[
\begin{aligned}
& 9.5 \mathrm{~m} \text { VN } \\
& 6.8 \mathrm{ft} \mathrm{Ibs}
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \mathrm{ml} \backslash \mathrm{~N} \\
& 9.8 \mathrm{ft} \mathrm{Ibs}
\end{aligned}
\] & \[
\begin{gathered}
13.5 \mathrm{~m} \mathrm{XN} \\
9.8 \mathrm{ft} \mathrm{Ibs}
\end{gathered}
\] & \[
\begin{array}{r}
9.5 \mathrm{~m} \backslash \mathrm{~N} \\
6.8 \mathrm{ft} \mathrm{lbs}
\end{array}
\] & \[
\begin{gathered}
10 \mathrm{~m} \mathrm{~N} \\
7.2 \mathrm{ft} \mathrm{lbs}
\end{gathered}
\] \\
\hline & 260 A & 380 A & 380 A & 260 A & 255 A \\
\hline
\end{tabular}

\section*{IV - ADJUSTING THE VOLTAGE REGULATORS}

1-Regulator for dynamos:
a) DUCELLIER regulator - 12 volts - 8243 F and PARIS-RHONE regulator - 12 volts - YT 2113.

Cut in voltage \(=12\) to 13.5 volts (cold and hot).
Cut out voltage \(=\) at least 1 volt less than the cut in voltage.
Return current \(=5\) A maxi (cold).

\section*{REGULATION :}

With the dynamo turning at 4000 rpm :
- Adjust the voltage to 12.5 volts, the intensity must be between 18 and 22 A .
- Adjust the voltage to 14 volts, the intensity must be between 18 and 22 A .
- Adjust the voltage to 15.5 volts, the intensity must be between 0 and 5 A .
b) DUCELLIER requlator - 12 volts - 8346 A and PARIS-RHONE regulator 12 volts - YT 2116 .

Cut in voltage \(=12\) to 13.6 volts (cold and hot)
Cut out voltage \(=\) at least 1 volt less than the cut in voltage.
Return current \(=5\) A maxi for 13 volts.

\section*{REGULATION :}

With the dynamo turning at 4000 rpm . :
- Adjust the voltage to 12.5 volts, the intensity must be between 30 and 33 A .
- Adjust the voltage to 13 volts, the intensity must be between 30 and 33 A .
- Adjust the voltage to 13.5 volts, the intensity must be between 13 and 33 A .
- Adjust the voltage to 14 volts, the intensity must be between 5 and 28 A .

Adjust the voltage to 14.5 volts, the intensity must be between 0 and 15 A .

\section*{2. Regulators for alternators :}

DUCELLIER regulator - 12 volts - 8360 A. PARIS-RHONE regulator - 12 volts - AYD 212.
With the alternator turning at 4000 rpm .
- Adjust the intensity to 8 A : the voltage must be between 13.40 and 14.40 volts.
- Adjust the intensity to 20 A ; the voltage must be between 13 and 14 volts.

\section*{V. CHECKING A PARIS-RHONE ALTERNATOR (A 13 R 52, A 13 R 109, A 13 R 110, AND A 13 R 119) OR A DUCELLIER ALTERNATOR (7530 A, 7551 A, 7551 B and 7558 A) ON THE VEHICLE.}

\section*{IMPORTANT REMARKS}

Certain actions must be avoided at all costs because they could destroy the alternator
1') Do not allow the alternator to turn without being connected to the battery.
\(\left.2^{3}\right)\) Before connecting the alternator, make sure that the battery is correctly connected (negative carthed).
\(3^{3}\)) The battery must be well charged when the alternator output is checked.
\(4^{2}\)) Do not test the alternator by short-circuiting the positive and earth terminats, or the "EXC" and earth terminals. terminals.
\(5^{5}\)) Do not reverse the leads connected to the regulator.
6) Vever try to energise an aliernator: it is unnecessary and uould damage the alternator and regulator. .

7') Do not connect a condensor either to the alternator or to the regulator "EXC" terminals.,
\(8^{\text {) }}\) Do not connect the battery terminals to a charger and never carry out are or spot welding on the car chassis without having first disconnected both positive and negative battery leads.

\section*{Checking the alternator output.}

The alternator output must be measured when the alternator is working at maximum speed.

1 Disconnect the negative battery lead.
2. Disconnect the excitation lead (yellow end) from the "EXC" terminal (1) and the charge lead (black end) from " + nterminal (2) of the alternator (insulate the two earth leads)
3. By means of a lead of a least 0.12 mm diameter, join the " + "alternator terminal (2) to the "EXC" alternator terminal (1).
4. Connect an ammeter in series and a rheostat in parallel to the charge circuit.
- Connect the " + , ammeter terminal to the \("+\) " alternator terminal (2).
- Connect the "-n ammeter terminal to the disconnected charge lead.
- Connect the rheostat terminals between the "-" ammeter terminal and the earth.
5. Connect a voltmeter with a jumper lead to the charce circuit.
- Connect tne " + " voltmeter terminal to the "+ alternator terminal (2).
- Connect the "-n voltmeter terminal to the earth.

6. Connect the negative battery lead.
7. Start the engine and allow it to idle.
a) L.ei the alternator lurn at \(16: 50 \mathrm{rpm}\) : To do this slowly accelerate the engine to :
- 1080 rpm with a PARIS-RHONE A 13 R 52 or DUCELLIER 7530 A and 7530 B alternator. 940 rpm with a PARIS-RHONE A 13 R 110 and A 13 R 109, or DUCELLIER 7551 A and 7551 B alternator.
Adjust the rheostat to obtain a voltage of 14 volts : the output current should be 16 amps .
b) Let the altermator turn at \(360 \%\) rpmi : To do this bring the engine speed to:
2350 rpm with a PARIS-RHONE A 13 R 52 , or DUCELLIER 7530 A and 7530 B alternator.
- 2060 rpm with a PARIS-RHONE A 13 R 110 or A 13 R 109 alternator, and DUCELLIER 7551 A and 7551 B alternator.
Adjust the rheostat to keep the voltage at 14 volts : the output current should be 35 amps . If this is not the case, the alternator should be overhauled.
8. Stop the engine.
9. Disconnect the negative battery cable.
10. Disconnect the measuring apparatus and connect the two leads from the harness to the alternator : - lead with black end to " + nterminal (2).
- lead with yellow end to "EXC" terminal (1).
11. Connect the negative battery terminal.

12 NOTE: Proceed in the same way for checking the alternator outputs 45 amps (PARIS-RHONE A 13 R 119 . or DUCELLIER 7558 A) See chapter III. § 2 (page 2. same operation) where the different values of checks are indicated.
VI. CHECKING A VOLTAGE REGULATOR (PARIS-RHONE AYD 212 or DUCELLIER 8360 A) ON THE VEHICLE

1. Disconnect the negative battery cable.
2. Disconnect the charge lead (coloured black) from the " + " alternator terminal (1).
3. Connect an ammeter in series and a rheostat in parallel to the charge circuit.
- Connect the " + "ammeter terminal to the " + " alternator terminal (1).
- Connect the "-n ammeter terminal to the disconnected charge lead (coloured black).
- Connect the rheostat terminals between the "ammeter terminal and the earth.

4. Connect a voltmeter with a jumper lead to the excitation circuit.
- Connect the "+" voltmeter terminal to the "十" regulator terminal (2) (coloured violet).
- Connect the "-» voltmeter terminal to the earth
5. Connect the negative battery lead. Start the engine and allow it to idie.

Switch off the ignition for a very short time in order to demagnetize the regulator.

Accelerate the engine to about \(2600 \mathrm{rpm}(4000\) rpm of alternator).

Adjust the rheostat to raise the current delivered by the alternator and read the corresponding voltage.

Take various voltage readings for different amounts of current.

Mark these measurements on the graph. They must be included in the shaded area of the graph. If they are not, the requiator is faulty and must be repaired.

NOTE: The graph opposite corresponds to readings taken at \(20^{\circ} \mathrm{C}(68 \mathrm{~F})\). If the ambient temperature is different, the values shown on the graph must be modified.

When the temperature drops, the voltage rises and when the temperature rises, the voltage drops by 0.15 volts for a difference of \(10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)\).

\section*{IMPORTANT NOTE :}

The voltage readings must be taken while increasing the current. The current must never be decreased.

6 Stop the engine and disconnect the negative bat tery terminal.

7 Disconnect the measuring apparatus, connect the leads as usual. and connect the negative battery lead.

\section*{VIII - ADJUSTING THE CONTROL PINION OF A PARIS-RHONE STARTER MOTOR \\ (Starter motor removed)}

7783

1. Remove the rubber plug (2) of the solenoid.

2 Disconnect the feed wire (6) of the inductors from the solenoid terminal (5).
3. Remove the shunt connector between the positive terminal(4) of the starter motor feed terminal, and the solenoid (excitation) feed terminal.

4 Activate the solenoid (3), by connecting
a) The positive terminal of a battery to the feed terminal (4) of the starter motor
b) The negative terminal of a battery to the solenoid solenoid terminal (5) (inductor feed).
With the control pinion (1) in a forward position, measure the distance " \(b\) " between the end of the control pinion and the stop (8). This distance" "," should be betwer" 0.5 and I tmm.
If this is not the case, operate the adjusting screw (7) to bring this about.

5 Disconneci the battery from the terminals (4) and (5) of the solenoid. The control pinion (1) moves back to occupy its res: position. Neasure the distance " \(a\) " between the thrust face of the flange of the starter motor on the negine block and the end of the control pinion (1). This mecturatment "a" should he 3..j atm mux.
If this is not the case overhaul the starter motor.
6. Connect the feed wire (6) of the inductors to the solenoid termmal (5)
7. Fit the rubber plug. (2).

\section*{VIII - ADJUSTING THE CONTROL PINION OF A DUCELLIER STARTER MOTOR}
(Starter motor removed)

1. Remove the plastic plug (2) of the solenoid (3).
2. Disconnect the feed wire (6) of the inductors from the solenoid terminal.

3 Remove the shunt connector between the positive terminal (4) of the starter motor feed terminal. and the solenoid (excitation) feed terminal.

4 Activate the solenoid (3). by connecting :
a) The positive terminal of a battery to the feed terminal (4) of the solenoid.
b) The negative terminal of a battery to the solenoid terminal (5) (inductor feed).
With the control pinion (l) in a forward position, measure the distance " \(b\) " between the end of the control pinion (1) and the stop (8). This d distance. ob, should be between \(0 .\). and 1 mm . If this is not the case operate the adjusting screws (7) to bring this about.
5. Disconnect the battery from the feed wire (4) of the solenoid and the feed wire (5) of the inductors. The control pinion (1) moves back to occupy its rest position. Measure the distance "an between the thrust face of the flange of the starter motor on the engine casing and the end of the control pinion (1). Thiv mecavurcment a should be 3... mat.
If this is not the case overhaul the starter motor.
6 Connect the feed wire (6) of the inductors to the solenoid terminal (5).
7. Fit the plastic plug (2).

1. Front torsion control rod.
g. Clamp for control rod (l)
h. Lever with cable hook for control rod (1)
4. Front anti-roll bar.
5. Rear antimroll bar.
6. Rear torsion control rod.
7. Front torsion control cable
8. Rear torsion control cable
9. R.H. control rod
10. L.H. control rod
11. R.H. control lever
12. L.H. control lever.
13. Adjusting sleeve
14. Integrator.
15. Return spring
e. Lever for control bar
16. Control bar
26. Delay device

\section*{II. PRE-ADJUSTING THE HEADLAMP CONTROL.}
D. 54.4

IMPORTANT NOTE : Make sure that the vehicle is in running order, with the heights correctly adjusted, and the tyres inflated to the correct pressures. Put the manual height control lever in the normal running position.
1. Position the frant torsion control rod on the front anti-roll bar (4).
a) Lateral positioning : Measure the distance "b" (between face "a" of the lever with cable hook " \(h\) " and the outer face of the R.H. sidemember). Distance "b" must be from 8,5 to \(10,5 \mathrm{~mm}\). If necessary adjust clamp " \(g\) " on the anti-roll bar (4) after slackening screw (2) of clamp "gn.

D. 54.?

2. Positioning the rear torsion control rod (6) on the rear anti-roll bar (5).
a) Remove the rear height control protection plate.
b) Lateral positioning : put the lever akn with the cable hook in the centre line of the cable aperture in the rear unit.

The lever " k " can be moved by 2 mm at the most to the right or the left of the centre line of the aper ture without affecting the operation of the component.

c) Argular positioning: Obtain an angle of \(90^{\circ} \pm 5^{\circ}\) betveeen the centre line of lever (\(k\)) with the cable hook and the cable (8).

3. Provisionally adjust control rods (9) and (10) screwed into the R.H. (11) and L.H. (12) levers so that they protrude by \(18 \pm 1 \mathrm{~mm}\).
For (10) and (12), refer to the diagram on page 1, same operation.

1397

4. Adjust the length of the return spring (15).

This length m must equal \(=70 \pm 10 \mathrm{~mm}\), measured as shown in the photograph.

To obtain this distance :
a) Disconnect the control assembly.
b) Position the lever (e) of the headlamp control cross - bar so as to bring the headlamp light units approximately parallel to the edges of the headlamp bodies on the front wings.

Hook the return spring (15) on the lever, choosing a hole in the lever to give distance "m» equal to \(70 \pm 10 \mathrm{~mm}\).
c) If necessary, re-adjust the control rods (9) and (10), pre-adjusted in §3. After this operation, the control rods should protrude by between 8 and 28 mm .
d) Positioning the control rod (13).

Turn the hook " \(\alpha\) " of the front rod of the assembly (13) towards the front R.H. wing.
- Turn the hook " b " of the rear rod of the assembly (13) towards the engine.
- Screw the adjusting knob until the front edge of knob "c \(n\) is in line with the central mark "d" on the front hook.
e) A.djust the length of the two cables (7) and (8) by means of the cable-tightener screws, so that the control rod (13) is approximately perpendicular to the centre of the line going through the cable hooks on the integrator (14) and so that the R.H. headlamp light units are approximately parallel to the edge of the R.H. headlamp body on the front wing.

1395

1816

5. Checking the operation of the control bar (16). NOTE : So that this bar can rotate properly, it is necessary that :
- the bearings (18) lie against the inside of the wings correctly,
- the rubber joints (17) are correctly fitted to the bearings (18) on the engine side, and lie against the inside of the wings.
- the end -float of the bar is well adjusted,
- if the bar is moved to the right, it returns easily to the left of the vehicle, and the lever lies against the R.H. bearing correctly.

Adjust the end-float of the bar, the clearance must be from 2 to 4 mm .
a) Push the bar towards the right until the spring, the bearing (18) and the washer (19) all come into contact.
b) Measure the distance between the lever and the bearing on the R.H. side, it must be from 2 to 4 mm .

If it is not, slacken screw (20) securing the control bar (16). Move the bar laterally (by means of the slots in the bar). Tighten screw (20) and check the clearance again.

\section*{6. Checking the self-levelling device.}

Before adjusting the headlamps themselves, it is advisable to check the operation of the self levelling device.
In order to do that :
a) Put the vehicle in the highest position
b) Remove the L.H. headlamp rim.
c) Fit appliance MR. 630-72 / 10 to the headlamp unit (see photograph). This appliance must be perpendicular and vertical. Check that the two hooking lugs " \(\alpha\) » are resting on the rear part of the headlamp unit.
Adjust indicator "d " so that mark "c " is opposite the level of the liquid in the plastic tube.
d) Proceed as follows. (during this operation, the level of the liquid must not move by more than 7 mm .
Press hard on the main brake pedal and, by means of the manual height control lever, lower the vehicle as slowly as possible. At first, only the front descends, until the height control lever is in the normal running position, after which both the front and the rear descend more or less simultaneously, until the lever is in the lowest position.

1503

NOTE: If this is done too quickly, the timing device in the front R.H. wing will slow down the movement of the headlamp.

In this way, it is possible to check the front and rear headlamp controls. If one or the other is faulty, the liquid does not remain opposite the mark during the corresponding phase of descent.
If there are stiff points in the control, the level will fluctuate rapidly.
e) If the liquid moves by more than 7 mm in the tube, the stiff points hindering the self levelling device, and the positioning of the timing device must be checked (see § 10 , same operation).

NOTE : If tool \(N^{\circ}\) MR 630-72/10 is not available, proceed as indicated in D. 540-0 § 10 page 8.

\section*{III. ADJUSTING THE HEADLAMPS.}

\section*{7. Ensure :}
- that the upper spring pin (21) is in tension in the groove of the control rod (9)
That the spring (22) embeds itself in the screw locating spring to prevent slip
- that the headlamp unit, when disconnected from the control rod, pivots freely. (if not, check the position of the leads and wiring connectors, which may foul the housing).
- that the points of the lower springs (22) and (25) press on the headlamp unit flange.
- that the lower pivot screws are correctly positioned in the bearing holes.
- that the leads pass through the hole at the bottom of the headlamp body.
-that the hole at the top of the headlamp body is fitted with a rubber plug (if not, the air pressure when travelling fast may raise the headlamp).
- that the plated headlamp rim is of the type designed for headlamps with self-levelling device.
8. Put the circuits under pressure and leave the engine idling during the adjustment.

\section*{9. Adjusting the headlamps.}

Use a device such as "Reglolux" or "Regloscope ". Ensure that the vehicle and the adjusting device are on the same plane.
a) Loosen without removing, the 2 screws securing the delay device (26) on the front wing and make sure that during the adjustment the delay device (26) does not restrict the movement of the controls.
b) To adjust the unit laterally, turn the lower outer screw (23).
c) To adjust the unit vertically, use the control rod (9).
d) If both headlamps are set too high, adjust the length of the adjuster (13), by means of its sleeve. This should not be moved more than 2 graduations from the central graduation.

NOTE:

2303

- Do not press on the adjusting screw with a screwdriver. After each adjustment tap the headlamp glass to stabilize its position.
- Do not interfere with the adjustment of the screw (24) locked with a hexagonal nut.

\section*{10. Adjust the position of the delay device.}

With the thumb andindex finger hold the two cups (27) level with their retaining rings (28). The body of the delay device will position itself so that the slidevalve is in the middle of its stroke.

\section*{IV. REPLACING A QUARTZ. IODINE HEADLAMP BULB. PRECAUTIONS}

This operation must only be carried out with the headlamps switched off.
After switching off, it is advisable to let the headlamps cool for 5 minutes before proceeding to handle them.

Do not touch the bulb with the fingers. If this is done inadvertently, clean the bulb carefully with a little soapy water and dry with a clean non-fluffy cloth.

\section*{REMOVAL}
11. REMOVE :
- the rim (1) by pulling the clip (a),
- the headlamp (2) by pulling until the 3 adjusting screws, (3), (8), and (9) for the headlamp are completely free from their plastic socket.
12. Disconnect the feed wire from the QI bulb, and the earth wire (6).
13. Unhook the spring (5) supporting the bulb. Remove the bulb.
ASSEMBLY.
14. Holding the QI bulb (4) at ab", position it in the projector with the locating dowels (C) in their housings (d).
15. Hook on the spring (3).
16. Fit the feed wire.
17. Put the headlamp unit (2) in position, engaging the 3 adjusting screws (3), (8) and (9) fully in their plastic sockets.
18. Engage the centre clip of the rim (1) in the slot, and push the rim on.

\section*{v. JuSting the headlamp.}

The QI headlamps must be adjusted so that the centre lines of the two beams are parallel to each other, horizontal and parallel to the longitudinal centre line of the car. (use a beamsetting device such as "Regloscope " or "Regiolux".
19. To adjust the headlamp unit horizontally, turn screw (3)
20. To adjust the headiamp unit vertically, turn screw (8).
21. Screw (9) permits simultaneous adjustment laterally and vertically.

\section*{ADJUSTING THE MAIN HEADLAMPS.}

\section*{IMPORTANT NOTE.}
1) Make sure that the engine is running, heights adjusted, tyres correctly inflated.

Manual 814-1

\section*{ADJUSTING A CIBIE HEADLAMP.}
3. To adjust the unit laterally, turn the lower screw (5).
4. To adjust the unit horizontally, turn the upper screw (4).

NOTE: Adjust the height as precisely as possible. The upper limit of the dipped beam should coincide with the upper line of the adjustment area on the apparatus.

\section*{VEHICLES ALL TYPES}
\(\longrightarrow\) September 1967

\section*{ADJUSTING THE MAIN HEADLAMPS AND FIXED AUXILIARY HEADLAMPS.}
5. Make sure :
- that the panel and the panel closing plate are tightly fitted,
- that the wing is tightly fitted,
- that the headlamp unit support is tightly fitted in the wing.

\section*{6. IMPORTANT NOTE :}

Make sure that the engine is running height adjusted, tyres correctly inflated.

Put the manual height control lever in "normal" position.

Put the circuit under pressure and run the engine at idling speed during adjustment.
7. Adjustment of fixed main headlamp (7).

Use apparatus of the "Reglolux n or "Regloscope " type.

Make sure that car and apparatus are in alignment.
Lift the bonnet to reach the adjustment screws inside the wing.
a) To adjust the unit laterally, turn the lower screw (5).
b) To adjust the unit vertically, turn the upper screw (8).

The upper limit of the dipped beam should coincide with the line on the screen "European code " (adjustment with no tolerance).

\section*{8. Adjustment of fixed auxiliary headlamp (2).}

Use apparatus of the "Reglolux n or "Regloscope " type.

Make sure that car and apparatus are in alignment.
Lift the bonnet to reach the adjustment screws inside the wing.
a) To adjust the unit laterally turn screw (3) until the main beam is on the centre point of the sighting mark of the screen.
b) To adjust the unit vertically turn screw (1) until the main beam is on the centre point of the sighting mark of the screen.

\section*{MAIN HEADLAMPS WITH SELF. LEVELLING DEVICE}
D. 54-6

1. Front torsion control rod.
g. Clamp for torsion control rod (l).
h. Lever with cable hook for torsion control rod (1).
4. Front anti-roll bar.
5. Rear anti-roll bar.
k. Lever with cable hook for control torsion rod (6).
6. Rear torsion control rod.
7. Front torsion control cable.
8. Rear torsion control cable.
9. R.H. control rod.
10. L.H. control rod.
11. R.H. control lever.
12. L.H. control lever.
13. Adjuster sleeve.
14. Integrator.
15. Return spring.
e. Lever for control rod.
16. Control bar.
26. Delay device.

\section*{D. 54-4}

\section*{PRE-ADJUSTING THE HEADLAMP CONTROL.}

IMPORTANT NOTE : Ensure that the car is in running order, heights correctly adjusted and tyres inflated to the right pressures.
The manual height control lever should be in «normal» position.

\section*{1. Position the front contral torsion rad on the front} anti-roll bar (4).
a) Lateral positioning : Measure the distance «b" (between face "a» of cable-hook lever "h" and outer side of R.H. sidemember) This must be " \(b\) " \(=8,5\) to \(10,5 \mathrm{~mm}\). If necessary remove clamp " \(g\) " on anti-roll bar (4) after loosening screw (2) in clamp "g".
b) Angular position : Make an angle of \(90^{\circ} \pm 5^{\circ}\) between centre line of cable-hook lever "h" and cable (7) by moving, if necessary, clamp " \(g\) " on anti-roll bar.
c) Tighten screw (2) holding clamp on anti-roll bar (4).
2. Position the rear control torsion rod (6) on the rear anti. roll bar (5).
(see diagram on page 1 for part markings)
a) Fiemove panel protecting rear corrector control. (Inside the rear boot)
b) Lateral frositioning: Place cable hook lever " \(k\) " in centre of hole for passage of cable in rear unit.

Without affecting the functioning, the lever " \(k\) " may be offset up to 2 mm to right or left of the centre of the hole.

c) Angular position : Make an angle of \(90^{\circ} \pm 5^{\circ}\) between centre line of cable-hook lever (\(k\)) and cable (8).
3. Adjust control rods (9) and (10) screwed into R.H. (11) and L.H. (12) so that they protrude (a) by \(23 \pm 1 \mathrm{~mm}\). For items (10) and (12) see diagram on page 1 of this operation.
4. Adjust the lengh of return spring (15). This should be \(m=75 \pm \mathrm{m}\) measured as in photograpn.

To obtain this measurement, proceed as follows .
a) Disconnect control assembly.
b) Position lever a e p so that main R.H. headlamp is correctly adjusted for height. For this :

Use apparatus of type "Reglolux n of "Regloscope \(n\). Ensure that the car and apparatus are in in alignment. Discoonnect delay device (26), to avoid affecting movement of controls.
Remove : pin (17),
\[
\operatorname{rod}(18)
\]
of R.H. lever (11).
Compress circuit and run engine at idling speed during adjustment.
Position main R.H. headlamp so that the upper limit of dipped beam coincides with the line on the screen of the apparatus (European code).
c) Reconnect lever(e) to return spring (15). Choose the hole in the lever allowing a measurement (m) nearest to \(75 \pm 5 \mathrm{~mm}\).
d) If necessary adjust control rod (9). After this operation, control rods should protude between 13 and 33 mm . (\(\mathrm{aqa}_{\mathrm{a}}\))

3553

e) Position control rod (13).
- Turn curved part (a) of the front rod (13) towards the front R.H. wing.
- Turn curved part (b) of the front rod (13) towards the engine.
- Tighten the adjuster until the upper end (c) is at the same level as the section (d) of the front rod.
f) Adjust the length of the two cables (7) and (8) using cable-clamps so that control rod (13) is exactly perpendicular to centre line through fixing point of cable on integrator (14) and so that main headlamp is adjusted to correct height (see § 4-b).
5. Adjust the end-float of the control bar (16) this clearance must be between 10 and 12 mm . Before adjusting end-float, ensure that
- L.H. control lever (12) is correctly fitted in wing. to do this :
Check :
- that bearing (19) is flush with plate " \(f n\),
- that L.H. spacer (18) is between the bearing (19) and the control lever (12),
- that bearing (19) retainer pin (17) is uppermost and that the ends are towards plate \(" f n\),
- that R.H. control lever (11) is correctly fitted in wing. For that :

\section*{Check :}
- that bearing (21) is flush with plate " gn ,
- that bearing retainer pin (20) is uppermost, and that the ends are towards plate " g ".

NOTE: It is necessary to grease control bar (16) in both bearings (19) and (21).

Push control bar well to the right and measure play " \(n n\) b between bearing (21) and R.H. control lever (11) this must be between 10 and 12 mm .

NOTE : Distance " n " can be more easily measured using shim MR. 630-51/49.
Insert shim between bearing (21) and R.H. control lever (11). It should fit exactly.

3287

\section*{ADJUSTING THE MAIN HEADLAMPS.}
6. Ensure :
- that the upper fixing screw (18) on the closing plate of the front panel is tight.
- that closing plote and front panel are well fixed.
- that the wing is tightly fitted.
that the headlamp case (20) is tightly fitted in the wing.
Check tightness : - of fixing screws (19), (21) and (24).
- of fixing lug (22),
- of tie \(-\operatorname{rod}(23)\). Tighten untilit touches both wing and case (20). Then turn screw once more and tighten lock nut.

3280

3280

- that the wires of the wing harness do not hinder the movement of the main headlamp.
- that the harness is held by the rubber collar on the lower part of the wing,
- that the rivets (18) are tight,
- that the rod (9) does not touch the sides of the slot (a) in the headlamp case,
- that there is a gap of at least 2 mm between the spare wheel and the control rod,
- that the ventilation pipe (19) does not touch the delay device rod (20). There must be at least 2 mm between them.
7. Put the circuit under pressure, and run the engine idling speed during adjustment.
8. Adjustment of main headlamps.

Use apparatus of type "Regolux" or "Regloscope».
Ensure that the car and adjusting apparatus are
in alignment.
a) Loosen, without removing, the two screws (21) securing the delay device (26) and make sure that during adjustment, the delay device does not restrict the movement of the controls.
b) To adjust the harness vertically, turn the control rod (9) by knob (23).
c) To adjust the harness horizontally, turn knob (22) the upper limit of the dipped beam should coincide with the line on the screen (European code) of the apparatus (no tolerance;.
d) If both headlamps are set too low or too high, adjust the lengh of the lengh of the rod (13) by means of its sleeve. This should not be moved more than 2 graduations from the centre.

NOTE : After each adjustment, tap the headlamp glass to stabilise its position by removing the inspection plate in the headlamp.
9. Adjust the position of the delay device (26). With the thumb and forefinger, hold the two cups (27) level with their retaining rings. The body of the delay device will position itself so that the slide-valve is in the middle of its stroke. Tighten the two screws (21).

NOTE :
1) The torsion control of the main headlamps may also of controlled by rocking the car. to and fro by leaning on the bumpers.
The dipped beam should remain between lines " \(B\) " and " \(C\) ".
2) When driving at night, make sure that the limit of the dipped beam is around 80 m and varies by no more than 10 m (more or less).

\section*{10. Check torsion control of headlamps.}

After adjusting the main headlamps, check the working of the headlamp torsion control. For this :

Place the car on a flat horizontal surface at right angles to a wall or other dull surface. The headlamps should be \(6 \mathrm{~m}(20 \mathrm{ft})\) from the wall.

Put the car in the normal position and run the engine at idling speed. Switch on the headlamps, dipped and draw a horizontal line " \(A\) " on the wall, correspongding to the upper limit of the dipped beam of the main headlamps.

Draw lines " B " and " C "as in diagram opposite.
Put the car in the highest position.
Depress brake pedal hard and, with manual height control lever, let the car down as slowly as possible. The front goes down first until the lever is in the normal position. Then the front and rear go down together as the lever is put into the lowest position.

NOTE: If the manœuvre is too swift, the delay device (26) on the front R.H. wing shows the movement of the headlamps.
During this manœuvre, the upper limit of the dipped beam should remain witin the limit of lines " \(B\) " and " C ".

If it does not, check :
-that the front and rear main headlamp controls are in working order.
that the control is not too stiff, which makes the limit of the beam move jerkily. In this case ensure that :
- the R.H. ventilation pipe (19) is not touching the rod of the delay device (20). They must be at least 2 mm apart.
- the delay device (26) is correctly positioned (see § 9).

Find the stiff parts in the working of the torsion control of the main headlamps.

Check that the wires in the electrical harness in the wing do not obstruct the movement of the main headlamps.

3558

ADJUSTING THE DIRECTIONAL CONTROL.
(Auxiliary headlamps)
11. Position the rear direction control rod (2) in the control lever (1) (the curved part of the rear rod (2) should point downwards). Pass the rear control rod (2) through the hole in the battery support.

Attach rear (2) and front (4) rods to sleeve (3).
Hook front rod (4) to return lever (6) in the hole "b " furthest from the centre line point the curved part " \(\alpha\) " downwards.

Hook the spacing rod (7) to return lever (6) in the hole " \(C\) " nearest to the centre line.

Point the curved part "d» upwards.
Fix the return lever plate (5) on to the spare wheel support crossmember.
(star washer under nut).
Hook the return spring (8) in the hole "en in the fresh air intake.
12. Position return lever (6).
a) Set the wheels for straight ahead steering .
(Roller in the hole of the cam).

NOTE: The straight ahead position must be correctly adjusted. To do this, two methods are possible:
- on the road
- in the workshop with optical equipment (see corresponding operation).

3559

13. Attach the directional control cables.
a) Pass the cable and sheath assembly (14) and (18) into the guide (17), orienting it as in the diagram opposite.

3559

3713

b) Attach the R.H. adjuster sleeve (11) to the under side of the return lever (6).
c) Attach the L.H. adjuster sleeve (12) to the upper side of the return lever (6).

Keep the sleeves (11) and (12) in place with circlips (16).
d) Hook L.H. control cable (14) in the L.H. adjuster sleeve (12).

If necessary, unscrew the sleeve (12) to fit cable nipple "a "

\section*{IMPi)RTANT NOTE}

Place thrust washer (17) between control cable nipple " an and the inside of adjuster sleeve (12 .
e) Hook the R.H. control cable in the R.H. adjuster sleeve (11) in the same way.

NOTE: Grease cable nipple "an and thrust washer.
f) Hook control cables to auxiliary headlamp levers (18).

Turn the auxiliary headiamps (19) as far as they will go:
- the R.H. headlamp to the right. the L.H. headlamp to the left.

Pass the control cables through the holes in the wing and hook up the cables by passing nipple "a " and the thrust washer (17) through hole \(" b\) b in the lever (18) so that cable nipple " \(a\) " is against the washer (17).

\section*{NOTE :}

Grease the movement of lever a c , as well as cable nipple "an and thrust washer (17).

3682

NOTE :

Turn the steering wheel fully to the right and make sure that the end of return lever (6) does not touch the radiator ventilation conduit (19).

If it does, move the conduit (19) to the left until the nearest point of return lever (6) and the conduit (19) are at least 2 mm apart.

There are slots at "an and "b " to allow this movement.

3715

\section*{ADJUSTING THE AUXILIARY HEADLAMPS.}
14. Make sure,
- that the upper fixing screw (15) of the front panel closing plate is tight,
- that the closing plate and panel are tightly fixed to the front unit,
- that the front wing fixing screws are tight.

Check that the headlamp box is tightly fitted in the wing.

Check the tightness of fixing screws (16-18 and 21) and of fixing lug (19) screws.

Tighten stay (20) until it touches both wing and box, then tighten one more turn and tighten lock nut.

Check that the directional headlamp (22) turns freely. For this :
- Loosen nut (24) and tighten screw (23) until there is no play of the headlamp on its pivots.

Then tighten screw (23) one quarter turn.
Adjustment support (26) should rise slightly from its slide, so that the spring (25) exerts a slight pressure.

Check,
that the conical part " \(\alpha\) " of screw (27) lies correctly in the sleeve.
that the wires of the electrical harness of the wing do not obstruct maximum rotation of the auxiliary headlamps.

Manual 814-1
2304

15. Make sure that the car's engine is running, height adjusted, types correctly inflated.

Put the manual height control lever in the " normal n position.

Put the circuit under pressure and run the engine at idling speed during the adjustment.

Place the car on a level, horizontal surface.
Set the wheels in the straight ahead position (see \& 12).

\section*{16. Adjustment of auxiliary headlamps.}

First method.
Use apparatus of the "Reglolux n or "Regloscope " type.

Ensure that car and apparatus are in alignment.
a) To adjust the unit laterally, turn
the R.H. adjuster sleeve to adjust the R.H. directional headlamp.
the L.H. adjuster sleeve to adjust the L.H. directional headlamp.
until the main beam is centred on the apparatus screen.
Tighten the two adjuster sleeve lock nuts (15).
b) To adjust the headlamps vertically, turn screw (16) until the main beam is centred on the apparatus screen.

\section*{17. Adjustment of auxiliary headlamps.}

\section*{Second method.}

Use tool 3901 - T.This gives precise adjustment and makes the operation easier.

NOTE. Tne wheels must be set exactly in the straight ahead position.
a) Check and adjust straight ahead position. (see \(\$ 12\) same operation).
b) Remove
- spare wheel,
- inspection plates of R.H. and L..H. headlamp units.
c) Positioning of tool \(390-\mathrm{T}\).

Set the L.H. part " A " of the tool right in the R.H. part.

Set the ends of the gauge in each wing.
Place hook an behind the collar of the headlamp parabola.

Centre the gauge on each headlamp so that the guides " b"and "cn touch the collar without touching the headlamp glass.
d) Adjustment of headlamp direction.

Slightly raise the gauge \(3901-\mathrm{T}\) in the direction indicated by the arrow. Re place the guides " bnand "cnaqainst the parabola collars. The headlamps must be pivot.

If they do, turn the sleeves (1) to correct.
(Ensure that, during this operation, the hook " \(a\) " is always behind the parabola collar).

NOTE: Check after tightening the lock nuts (2) that the adjustment is still correct.

e) Adjustment of headlamp height.

Run the engine at idling speed, with the manual height control in the "normal" position, wait for the car to become stable.

Rotate in turn the adjuster screw (16) for each headlamp, to bring the bubble to the centre of the spirit levels.

NOTE: The apparatus contains two levels on each side.
one is for adjusting MARCHAL headlamps (marked MARCHAL on the bar (3).
the other is for adjusting CIBIE headlamps, (marked CIBIE on the bar)

\section*{REPLACING A QUARTZ-IODINE BULB.}

\section*{PRECAUTIONS}

This operation should only be carried out with the headlamp extinguished.

After switching off, it is advisable to allow 5 minutes for cooling before handling.

Do not touch the bulb with the fingers. If this is done inavertently, clean the bulb carefully with a little soapy water and dry with clean cloth free from fluff.

REMOVAL.
18. Lift the bonnet to reach the Q.I. bulb inside the wing.
19. Unhook the bulb retainer spring (1) and remove the bulb (2) tholding it at " b ".
20. Disconnect the feed wire to the Q.1. bulb and the earth wire.

ASSEMBLY.
21. Connect the feeder wires (violet to the Q.I. bulb.
22. Hold the Q.I. bulb at a b . and position it in the lamp with the lucating dowels - a in their slots " c ".

Re-hook the spring (1).

\section*{POSITION OF ARMS.}
1. Loosen screws (1)
2. Position wiper arms on their axes as illustrated below.
3. Tighten screws (1) to \(4 \mathrm{~m} / \mathrm{N}(0,4 \mathrm{~m} . \mathrm{kg})(2,9 \mathrm{FT}\) LBS)

\section*{ALL TYPES OF VEHICLE}
except DI

\section*{COOLING SYSTEM}

This allows the air entering the passenger compartment to be cooled whilst at the same time extracting part of its moisture. (this reduces misting up)
1. DIAGRAM SHOWING WORKING PRINCIPLES OF SYSTEM

\begin{tabular}{|c|c|}
\hline A : & Compressor \\
\hline B : & LH condensor \\
\hline C : & RH condensor \\
\hline D & Dehydrating reservoir \\
\hline
\end{tabular}
E :. Expansion chamber
F \(\quad\). Temperature sensor
G :. Evaporator

The compressar \(A\) sends the coolant along a hermetically sealed circuit. It sucks in the fluid as vapour at law pressure, compresses it (producing a rise in temperature) and re-circulates it to the condensers.
Condensers \(B\) and \(C\) allow the fluid to condense, giving up its stored heat to the outside air which circulates through the ribs. On leaving the condensors, the fluid, now a liquid at high pressure, crosses the dehydrating reservoir.
The dehydrating reservair \(D\) stores the fluid and extracts the moisture fram it.
The expansion chamber \(E\) controls the flow of fluid to the evaporator
The temperature sensor \(F\) is situated on the outlet pipe of the evaporator. It controls the expansion chamber. ensuring that all the fluid entering the evaporator is vaporized and that the compressor does not suck in any fluid in a liquid state which would cause immediate damage.
The evaporator \(G\) allows the fluid to evaporate. The heat necessary for this evaporation is taken from the passenger compartment by means of the walls, thus cooling the passenger compartment. The fluid at law pressure is consequently turned into vapour which is sucked in by the compressor and the cycle begins again.

\section*{II. COIAPONENTS}
\begin{tabular}{|c|c|c|}
\hline Compressor : & & \begin{tabular}{l}
YORK A. 206 \\
(MITCHELL 7 039)
\end{tabular} \\
\hline Lubricating oil : & & TOTAL "LUNARIA 25" \\
\hline Electro-magnetic cut-in & & POLYFLEX - 12 V (5" 5/8) \\
\hline Belt : & & POLYFLEX 11 \\
\hline Pulley ratio & \[
\frac{\text { drive pulley }}{\text { drive pulley }}=
\] & \[
\frac{108 \mathrm{~mm}}{144 \mathrm{~mm}}=0.75
\] \\
\hline Condenser: & & CHAUSSON \\
\hline Dehydrating reservoir & & MITCHELL Mark IV \\
\hline Evaporator black :. & & SOFICA " CAPRI Console" \\
\hline Coolant & & R. 12 \\
\hline Weight of coolant : & & 1 kg (2.2 Ibs) \\
\hline Flexible pipes: . & & STRATAFLEX 256 \\
\hline
\end{tabular}

\section*{III CONTROLS}

See operation D. 513-00

\section*{S.O.G.E.V. EQUIPIAENT FOR FILLING THE COOLING CIRCUIT sold under ref. No. B 01.1 409/2}

Replacement Parts : The parts listed below can be obtained directly from the relevant suppliers or via the S.O.G.E.V.
\begin{tabular}{|c|c|c|c|}
\hline Marking on part & Number of parts in set & Description of material & Name and address of supplier \\
\hline 1 & 1 & Vacuum pump ref. AG. 1300, spare gaskets, glass cylinder (level indicator) and operating instructions 7407400 & \multirow[b]{3}{*}{\begin{tabular}{l}
S.O.G.E.V. \\
25, rue de Chony \\
26 - BOURG-LES-VALENCE \\
Tel : 43-00-83 FRANCE
\end{tabular}} \\
\hline 2 & 2 L (\(3 \frac{1}{2} \mathrm{pts}\)) & "G" oil for vacuum pump & \\
\hline 8 & 1 & Double male union for welding ref : DM. 96 & \\
\hline 3. & \(1=0.900 \mathrm{~m}\) & Flexible pipe "Duo test robinair" ref : CH. 36 E 1 & \multirow{4}{*}{\begin{tabular}{l}
ROLESCO \\
58, avenue P.V Couturier \\
92 - LEVALLOIS FRANCE
\end{tabular}} \\
\hline 4 & \(1=1.800 \mathrm{~m}\) & Flexible pipe "Duo test robinair" ref: CH. 72 E. 1 & \\
\hline 5 & \(2 \mathrm{~L}\left(3 \frac{1}{2} \mathrm{pts}\right)\) & Tee pipe R. I.F. ref. T 1.1/4 "Flare* & \\
\hline 7 & 5 & Double female union ref : PF \(11 / 4\) "Flare* & \\
\hline 6 & 2 & Valve B.M.L. 6 & BRANCHET - 2, rue de Savoie 69 - SAINT-PRIEST FRANCE \\
\hline 9 & 1 & Complete adapter for PRESTOGAZ R 12 spray & From refrigeration specialists \\
\hline 10 & 1 & Reducer ref.: \(646431\left(1 / 2^{\prime \prime}-1 / 4^{*}\right)\) & S.E.R.S.E.G. \\
\hline 11 & 1 & Vacuum meter (\(\omega=80\)) ref : 6303 Z 3 . & \begin{tabular}{l}
1, cours Albert Thomas \\
69-LYON-3 FRANCE
\end{tabular} \\
\hline
\end{tabular}

\section*{IIAPORTANT NOTE}

The operating instructions (ref. 7407400) supplied with the S.O.G.E.V. vacuum pump must be consulted before starting up the latter, and for matters concerning its maintenance and repair.

The incorrect connecting up of the electric motor, or starting the vacuum pump without " \(G\) " oil would bring about rapid deterioration of the components.

\title{
1. FILLING THE COOLING CIRCUIT \\ using S.O.G.E.V. equipment and a PRESTOGAZ R. 12 spray.
}

\section*{NOTE :}

\section*{Equipment used in this operation :}
a) S.O.G.E.V. equipment - Reference : B. 01 1409/2
- Supplier: Etablissements S.O.G.E.V. 25 rue de Chony 26 - BOURG-LES-VALENCE (Tel : 43-00-83) FRANCE
b) PRESTOG 12 R. 12 sprays : \(1 \mathrm{~kg}(2.2 \mathrm{Ib})\) sprays sold by the Replacement Parts Dept. under ref : \(\mathrm{N}^{\circ}\) ZC 9857108 U

\section*{IMPORTANT}

\section*{Precautions to be taken during this operation:}
a) Protective goggles MUST be worn.
b) Do not smoke : in the presence of a flame, R. 12 changes into a toxic gas.
c) Never heat any part of the cooling circuit
d) Never start up the cooling system with the two cooling fans disconnected
1. Drain the circuit :

\section*{NOTES :}
- This operation should be carried out in a well ventilated area.
- The cooling circuit must be drained before any repair can be carried out on it.
a) Make sure that the tap (4) marked "VIDE" (empty) and the tap (6) marked "FREON" are closed.
b) Remove the plug (1) of the compressor suction valve, and connect in its place the union (2) of the flexible pipe (3)
c) Dip the end of the flexible pipe (5) into an open receptacle in order to break up the fluid jet and prevent it turning into vapour. Open the tap (4) marked "VIDE" (empty) Close the tap (4) again when the circuit has been drained. (i.e when the gas jet ceases to make a hissing noise)

\section*{2. Check the oil level in the compressor}

4. Fill up the circuit :
a) Prepare the PRESTOGAZ spray:

Unscrew the "Presto-vanne" union (5) of the tap (4) (marked FREON) and connect it to the spray : to do this, slide the coupling dogs of the union (5) right into the neck of the spray, forcing them if necessary. The threaded hole of the "Presto-vanne" should be centred in the valve of the spray.

b) Connect the spray to the circuit :

Screw the spray A fitted with the "Prest-vanne' union, on to the tap (3) marked "FREON" - a w \(1, n t\) tikhl'th lully: but only until the end of the tap comes into contact with the valve; do nol turn the latter.
c) Bleed the pipe (1)

Open the tap (3) (marked "FREON") and loosen the union (2) which must be connereved tw the compressor sultion calce. Screw the spray on to the tap until the gas escapes through the union (2) and bleeds the pipe (1). Tighten the union (2).
d) Fill the cooling circuit:

With the vehicle cold (as cold as possible), position the spray A upside down and hold it between the palms of the hands (which raises the fluid temperature sufficiently to fill the circuit with coolant in a liquid state).
It is possible to tear the flow of the fluid through the valve of the spray by placing one's ear aqainst the bottom of the spray : it stops when the spray can is empty (shake the can to establish this)

NOTE : In some cases, heating the spray with the palms may be insufficient. Shoula this be the case, top up the circuit with coolant in a daseous state. To do this
- Hold the spray right way up

To adjust the cold and maximun ventilation :

(5) fully to the right.

I chicles \(\longmapsto\); \(199_{-}^{-}\): turs button (6) fully to the right
- Start the engine and accelerate slightly antil the spray cain is empty.
Stop the engine
e) Unscrew the spray from the tap (3) and remove the "Presto-vanne" unio 1. Disconnect the pipe pipe (1). Screw the plug (6) into the compressor suction valve.

Manual 814-1

\section*{ADJUSTING THE DOORS AND LOCKS.}

I. ADJUSTING THE REAR DOORS.

NOTE : For this operation the rear wings should already have been adjusted.
1. The depth to which the latch is engaged in the the catch must be at least 4 mm , with clearance between door and body.
To obtain this depth, meve door supports (1) longitudinally. If this is not sufficient, place spacers under the catch at "an".
2. Adjustment of door height : :

Turn the pivot screws so that the top of the door is level with the rear doors with the "light line" aligned within 1 mm with that on the rear wing.
The rear edge of the door should be parallel with the edge of the wing, and within 2 mm . If not move one of the pivots supports (1).

\section*{II. ADJUSTING THE FRONT DOORS.}
3. The depth to which the latch is engaged in the catch must be at least 4 mm . With clearance between door and central door pillar.
To obtain this depth, move door supports (2) longitudinally. If this is not sufficient, place adjusting shims unde: the catch.
4. Adjustment of door height : : Turn pivot screws so that the top of the door is level with or slightly below (\(1-2 \mathrm{~mm}\)) the rear point of the bonnet and level with or slightly ahnve (\(1-2 \mathrm{~mm}\)) the rear door : the "light line" "c" should be aiigned with that on the rear door to within 1 mm . The rear edge of the door should be parallel with the edge of the front door and within 2 mm . If not move one of the pivot supports (2).

\section*{III. LATERAL ADJUSTMENT OF DOORS.}

To avoid any whistling the front door must be flush with or slightly proud of the rear door (by \(1-2 \mathrm{~mm}\)) To adjust the doors laterally, the number of space:s placed between the centre pillar and pivot support (1) must be modified.

ADJUSTING THE BONNET, FRONT WINGS AND DOORS.
VEHICLES ALL TYPES
\(\longmapsto\) September 1967

"a" The edges of the doors should be parallel and within 2 mm .
"b." The top of the door should be at the same level as or slightly below (by 1.2 mm) the rear point of the bonnet.
"c. The "lignes de lumiere "should be aligned within 1 mm .
"d . The door should be level with or slightly below (by 1-2 mm) the rear of the wing.
"e" The rear edge of the wing should be parallel with the front edge of the door and within 2 mm .
" f " "g " Within 2 mm (constant play between wings and bonnet).
"h " 580582 mm on vehicles \(D\) of all types (except. P'allas,) For a 'allas = vehicles : side member trimming is of a different thickness this must be measured with for example a pin in order to determine the bonnet height. Call this thickness " \(\alpha\) ". Given that the height taken to the panel is \(587+{ }_{0}^{2} \mathrm{~mm}\), the height to trimming will be \(587+2 \mathrm{~mm}^{0}-« \alpha "\) -
" j " Play between windscreen rubber and rear point of bonnet, within 1-2 mm.

\section*{ADJUSTING THE BONNET}

\section*{VERY IMPORTANT NOTE :}

When the bonnet is closed, it cannot be opened if the cables are not connected to the unlocking mechanism.

The mechanism is not accessible from the outside.

If, by mistake, the bonnet release has not been connected, proceed as shown in section 2.

\section*{ADJUSTMENT OF LOCK.}
1. Fit tool (\(N^{*}\) MR. 630-82 5) in the lock apertures

Lock it in them.
2. Lower the bonnet. The closing lugs should fall in the centre of the tool tube.

\section*{3. Adjust the lugs (1)}
a) I.onsitudinully : with slot " b n by loosening nut (3).
b) Laterally: with slot " an by loosening screws (2).

Remove tool (N \({ }^{\mathrm{c}}\) MR. 63082 5)
c) Idjust depth to which lugs are enguged:

Tighten (or loosen) the lugs (one turn alters the lengh by 1 mm) by releasing nut (3).
3
4. Check lock.

\section*{II - ADJUSTING THE BONNET}
(In the event of the mechanism being disconnected)

\section*{NOTE}

It is possible to open a bonnet of which the opening mechanism has become disconnected :
- either because the cables are not connected to the bolts
- or because the rollers have slipped from the cables due to insufficient tightening of the screws
1. Use tool MR. 630-66/15

Insert the tool at the junction of the bonnet and the wing, between the bonnet and the bumper. By feeling around, engage the end of the tool in the hole of the lock support and push the bolt until it releases
2. Repeat the operation for the other side

\title{
CHECKING AND REPAIRING OF A REAR WINDOW HEATING RESISTANCE.
}

\section*{I. CHECKING}

Force of the heating resistance :
a) Saloon:

73 to 84 Watts under \(13.5 \pm 0.2\) volts
\(\longmapsto \quad 6 / 1972\)
95 to 110 Watts under \(13.5 \pm 0.2\) volts
b) Safari 85 to 110 Watts under \(13.5 \pm 0.2\) volts

To check the rear window heating resistance, measure :
1. Ither the current circulating in the resistance, by using a amphemeter, connected to the feed resistance wire. The current should be for:
a) Saloon
\(\rightarrow \quad 6 / 1972\)
.4 .8 to 5.3 amps under 12 volts
\(\longmapsto \quad 611972\)
.6 .2 to 7.2 amps under 12 volts
b) Safari .5 .6 to 7.2 amps under 12 volts
2. Ither the resistance, using \(a\) ohmmeter. The resistance should be :
a) Saloon

. 2.17 to \(2.5 \Omega\)
. 1.65 to \(1.92 \Omega\)
b) Sa/ari
. 1.65 to \(2.14 \Omega\)

\section*{II. REPAIRS.}

NOTE : The two undementioned repairs can be carried out on a heated window fitted to the vehicle.

\section*{1. Replacing the terminals.}

Tin the part of the terminal to be soldered. Solder it in the place provided (soldering iron).
2. Repairing an element.
a) Obtain from the Replacement Parts Department:
- l Kit
.ZC. 9855128 U
This kit "SECURIGLACE" contains :
- 1 Bottle of abrasive cleaning powder,
- 1 Sachet of conducting enamel,
- 1 Tube of adhesive
- 1 Tube of hardening product for the adhesive,
- 1 Bottle of metallic powder,
- 1 Roll of thick adhesive tape,
- 1 Warning light for detecting cuts,
- 1 Roll of adhesive for detecting cuts,
- 1 Plastic spatula,
- 1 Glass plate, for mixing the products,
b) Locating the cut :

With resistance fed as normal :
- Locate the defective resisting wire by sticking the adhesive detecting tape in the centre of the rear window (on the inside), and on all the resistance lines so that the tape is perpendicular to the latter. The wires, when when the circuit is not broken, will turn the thermopaper blue when the temperature generated is raised.
- Onto the cut wire, slide the two pointed probes of the support of the warning light, used for detecting cuts. When the lamp lights up, the pointed probes are on both sides of the break in the resistance. By moving them slightly along the wire, one can determine the extent of the cut exactly.
c) Preparing the rear windows:

With the resistance no longer under voltage :

Clean out the area treated with the powder, contained in the bottle marked "Bimspulver". Sprinkle this powder on a small piece of rag and rub. Then wipe clean with a second piece of rag.

Place on each side of the resistance, a strip of thick adhesive tape 25 mm long, marking the length of repair to be carried out. The edges of the strip must be perfectly straight and clean, so as to avoid a cut during the repair.
d) Repairs:

\section*{First phrase :}

Empty the complete contents of one of the sachets of conducting enamel onto the glass plate. Mix the contents well by using the spatula.

Apply the paste thus obtained, on the spot to be repaired, so as to completely fill the space between the two strips of tape. Only apply the paste to the cut.

Leave to dry for about 15 minutes, at atmospheric temperature.

\section*{Second phrase :}

On the glass plate, prepare a mixture (of about the same size as a chestnut) containing equal amounts of the adhesive and U.H.U. hardening product.

To this paste, add an equal amount of the metallic powder, contained in the bottle marked "Metallpulver" mix well with the spatula.

Apply the paste thus obtained on the conducting enamel exceeding the edges of the deposit of the latter, on both sides, by 10 mm . But with the length still limited by the strips of tape. Use the spatula to regulate the thickness, using the tape as a support.

Leave to dry for an hour and a half, at atmospheric temperature, before removing the strips of tape. Move them aside parallel to the surface of the rear window, to avoid removing the film deposited. The drying time can be reduced by charçing the resistance for half an hour.

NOTE :
Wait 24 to 48 hours before proceeding to clean the inside of the rear window.

\section*{e) Checking :}

Carry out the check, using the adhesive tape. Proceed as when locating the cut.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{DESCRIPTION} & \multicolumn{2}{|l|}{REPAIR METHOD NUMBERS} & \multirow[t]{2}{*}{REF. Nos of tools on sale} \\
\hline & Old & New & \\
\hline \multicolumn{4}{|l|}{ENGINE} \\
\hline Engine - gearbox assembly support & & & 3083 - T a \\
\hline Gearbox support & MR. 3301-260 & MR. 630-42/13 & \\
\hline Engine support adjuster template & MR. 3725-110 & MR. 630-51/38 & \\
\hline Elertric tachometer & & & 2436-T \\
\hline Graduated circuit for adjustment of automatic advance & & & 3078-T \\
\hline Fuel pump pressure control gauge & & & 3087-T \\
\hline Oil pressure adapter & MR. 3705 & MR. 630-56/1 & \\
\hline Pulley alignment measuring rod & & & 3082-T \\
\hline Belt tension hook & MR. 4208-20 & \[
\text { MR. } 630-66 / 11 \mathrm{~B}
\] & \\
\hline Belt tension lever & MR. 4208 & MR. 630-66/11 & \\
\hline CLUTCH & & & \\
\hline Clutch mechanism control apparatus (D. IE vehicles) & & MR. 630-55/9 & \\
\hline Hyaraulic test-bench (IIIS2 Fluid) & & & 2290-T \\
\hline Hydraulic test-bench (IHSS2 Fluid) & & & 3654-T \\
\hline Test-bench accessories (IIISO Fluid) & & & 3655-5 \\
\hline Clutch pedal spring adjuster & & MR. 630-27/2 & \\
\hline \multicolumn{4}{|l|}{GEARBOX} \\
\hline Tool set for checking oil pressure on BW gearbox & & & 3658-T \\
\hline Adjuster for reverse - neutral return & & & 3188-T Replaces
\[
3183-T \mapsto 9 / 69
\] \\
\hline Clutch lock control apparatus & MR. 3301-240 & MR. 630-43/20 & \\
\hline Hydraulic test - bench (l. \(/ 1.52\) Fluid) & & & 2290-T \\
\hline Hydraulic test-bench (LILS2 Fluid) & & & 3654-T \\
\hline Test-bench accessories (L/ISO Fluid) & & & 3655-T \\
\hline \multicolumn{4}{|l|}{PRESSURE SOURCE AND RESERVE} \\
\hline Hydraulic test - bench (LILS) Fluid) & & & 2290-T \\
\hline Hydraulic test - bench (Li/S? Fluid) & & & 3654-T \\
\hline Test-bench accessories (1./1, 2 2 Fluid) & & & 3655-T \\
\hline \multicolumn{4}{|l|}{FRONT AXLE} \\
\hline Wheel camber control apparatus & & & \[
\begin{aligned}
& 2311-T \\
& 2321-T
\end{aligned}
\] \\
\hline Caster control apparatus & & & 2321-T \\
\hline \multicolumn{4}{|l|}{SUS PENSION} \\
\hline Front height adjuster gauges & MR. 1401-30 & MR. 630-51/3 & \\
\hline Hydraulic test - bench (LIL 2 Fluid) & & & \\
\hline Hydraulic test-bench (L/LS゙) Fluid) & & & \[
\begin{aligned}
& 3654-T \\
& 3655-T
\end{aligned}
\] \\
\hline
\end{tabular}

MR. 630-43/20
ex. MR. 3301-240

Steet metal 2 mm

MR. 630.51/3
ex. MR. 1401-30

Stut. . -14
Throughout

MR. 630-51/38

MR. 630-56/1

MR. 630-66/11
ex. MR. 4208

MR. 630 72/10

MR. 630-66/15
ex MR. 4538


```


[^0]:    - Slacken the screw locking the ring (6)
    - Turn the ring (6) and position it so as to afford the maximum adjustment in both directions
    - Tighten the screw.

[^1]:    * A.T. : All types.

[^2]:    - Screws securing the diaphragm on the crankshaft $.70 \mathrm{~m} \mathrm{IN}(7 \mathrm{mkg}$. or 50.6 ft Ibs$)$
    - Screws securing th diaphragm on the converter : . . . . . . . . . . . . . . . . . . 70 m MN ( 7 mkg . or 50.6 ft lbs )

